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What is the nature of the association between age (7–11 years) and performance on mathematical
equivalence problems (e.g., 7 � 4 � 5 � 7 � __)? Many prevailing theories suggest that there should
be a positive association. However, change-resistance accounts (e.g., N. M. McNeil & M. W. Alibali,
2005b) predict a U-shaped association. The purpose of the present research was to test these differing
predictions. Results from two studies supported a change-resistance account. In the first study (N � 87),
performance on equivalence problems declined between the ages of 7 and 9 and improved between the
ages of 9 and 11. The decrements in performance between the ages of 7 and 9 were then replicated in
a second study (N � 35). Results suggest that the association between age and performance on
equivalence problems is U-shaped.
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The focus of this article is on the development of children’s
performance on mathematical equivalence problems (e.g., 3 � 4 �
5 � 3 � __). Mathematical equivalence is a fundamental concept
in algebra (Carpenter, Franke, & Levi, 2003; Knuth, Stephens,
McNeil, & Alibali, 2006), and success in algebra is crucial to
future educational and employment opportunities (Ladson-
Billings, 1998; Moses & Cobb, 2001; National Research Council,
1998). Equally important, researchers have relied on detailed anal-
yses of performance in well-defined areas of mathematics for
decades as a means for evaluating general claims about develop-
mental and individual differences in learning, memory, and prob-
lem solving (e.g., Anderson, Reder, & Lebiere, 1996; Dixon &
Moore, 1996; Geary, Bow Thomas, Liu, & Siegler, 1996; Gelman,
Meck, & Merkin, 1986; Goldin-Meadow, Alibali, & Church, 1993;
Mix, Levine, & Huttenlocher, 1999; Qin et al., 2004; Schwartz &
Black, 1996; Siegler & Stern, 1998; Swanson & Beebe-
Frankenberger, 2004).

Many studies have shown that children have substantial diffi-
culties with mathematical equivalence problems (e.g., Alibali,
1999; McNeil & Alibali, 2004; Perry, Church, & Goldin-Meadow,
1988; Rittle-Johnson & Alibali, 1999). However, little is known
about how performance develops with age. To date, no theory has
specifically addressed how performance on mathematical equiva-

lence problems develops over the course of the elementary school
years. However, several theories have focused on the development
of quantitative skills more generally. Many of these theories sug-
gest that performance on equivalence problems should improve
across the elementary school years. For example, the Piagetian
account suggests that performance should improve with age as
children construct progressively more sophisticated logical struc-
tures for coordinating relationships of equivalence (Inhelder &
Piaget, 1958). Similarly, theories that focus on the role of working
memory capacity in math problem solving predict that perfor-
mance should improve with age as executive processing capacity
and phonological short-term memory mature (Adams & Hitch,
1997; Ashcraft, 1992; Barrouillet & Lepine, 2005; Bull &
Johnston, 1997; Gathercole & Pickering, 2000; Hecht, Torgesen,
Wagner, & Rashotte, 2001; Hitch, 1978; Hitch, Towse, & Hutton,
2001). Likewise, theories that stress the importance of basic num-
ber knowledge in higher level mathematics predict that perfor-
mance should improve with age as proficiency with basic arith-
metic facts increases (Haverty, 1999; Haverty, Koedinger, Klahr,
& Alibali, 2000; see also Kotovsky, Hayes, & Simon, 1985). The
prevalence of this “positive association” stance is not really sur-
prising because “‘performance improves with age’ is as close to a
law as any generalization that has emerged from the study of
cognitive development” (Siegler, 2004, p. 2). Besides, it makes
sense intuitively—children should get better at math as they get
older.

The aforementioned theories suggest that there should be a
positive association between age and performance on equivalence
problems because, in general, they assume that children’s difficul-
ties with mathematics are due to something that children lack (e.g.,
advanced logical structures, a mature working memory system,
proficiency with basic arithmetic facts). According to this view,
children perform poorly on equivalence problems because they
lack the cognitive structures or functions necessary for solving the
problems correctly, and performance should improve over child-
hood as those structures or functions develop.
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In contrast to theories that focus on what children lack, change-
resistance accounts (e.g., Luchins & Luchins, 1950; McNeil &
Alibali, 2005b) suggest that children’s difficulties are due, at least
in part, to something children have—existing knowledge. Change-
resistance accounts are rooted in classic “top-down” approaches to
cognition and problem solving (e.g., Bruner, 1957; Luchins, 1942;
Rumelhart, 1980; Tolman, 1948), as well as in contemporary
theories that focus on the role of domain-general statistical learn-
ing mechanisms in development (e.g., Rogers, Rakison, & Mc-
Clelland, 2004; Saffran, Aslin, & Newport, 1996; Zevin & Sei-
denberg, 2002). On the whole, these theories tend to focus on the
specific representations that learners construct through domain
experience and practice, as well as learners’ tendencies to persist
in the use of those representations, even when they are not appro-
priate. The general theoretical claim is that early learning con-
strains later learning. According to this view, the patterns with
which children initially gain experience within a domain become
entrenched, and learning difficulties arise when to-be-learned in-
formation overlaps with, but does not map directly onto, en-
trenched patterns.

In the United States, children’s early mathematics experience is
weighted heavily toward arithmetic operations such as addition,
subtraction, multiplication, and division. This is because mathe-
matics is considered to be a domain in which early competence
with “basic skills” is necessary for advanced thinking and problem
solving. Children learn arithmetic in a very procedural fashion for
many years before they learn to reason about equations as expres-
sions of mathematical equivalence. Indeed, data from the Third
International Mathematics and Science Study (Beaton et al., 1996)
show that, unlike children from higher achieving countries, chil-
dren in the United States spend substantial amounts of class time
reviewing basic arithmetic skills throughout the elementary and
middle school years (National Science Board, 2002; see also
Valverde & Schmidt, 1997).

Research has shown that children pick up on at least three
recurrent, arithmetic-specific patterns. First, children learn that the
equal sign and answer blank come together at the end of the
problem (e.g., 3 � 4 � __, McNeil & Alibali, 2004; Seo &
Ginsburg, 2003). Second, children learn to interpret the equal sign
as an operator (like � or �) that means “calculate the total”
(Baroody & Ginsburg, 1983; Behr, Erlwanger, & Nichols, 1980;
Kieran, 1981; McNeil & Alibali, 2005a; Rittle-Johnson & Alibali,
1999). Third, children learn to solve math problems by performing
all given operations on all given numbers (McNeil & Alibali,
2000, 2004, 2005b; Perry, 1991; Perry et al., 1988). These three
patterns have been called “operational patterns” in prior work
(McNeil & Alibali, 2005b).

Although children’s representations of the operational patterns
likely facilitate performance on traditional arithmetic problems
(e.g., 3 � 4 � __), they are unlikely to help (and may even hinder)
performance on equivalence problems, which do not adhere to the
traditional form (McNeil & Alibali, 2004). To solve an equiva-
lence problem (e.g., 3 � 4 � 5 � 3 � __) correctly, children must
(a) notice that the equal sign is not at the end of the problem, (b)
understand that the equal sign denotes an equivalence relation
between the two sides of the equation, and (c) manipulate the
numbers and operations to arrive at an answer that makes both
sides of the equation have the same value. To satisfy these con-

ditions, children must either ignore or override their long-term
memory representations of the operational patterns.

According to a change-resistance account, children’s long-term
memory representations of the operational patterns interfere with
performance on equivalence problems (McNeil & Alibali, 2005b).
If this is the case, then the development of children’s ability to
solve equivalence problems should be tied directly to children’s
susceptibility to interference from their representations. Over the
course of the elementary school years, this should give rise to a
U-shaped association between age and performance on equiva-
lence problems, as described next.

First- and second-grade children (ages 6–8) have just started
learning arithmetic in a formal school setting, so they may not have
strong representations of the operational patterns yet. Although
they have known how to add and subtract for some time, they
likely have not had enough practice with school-based arithmetic
to extract the operational patterns from their experience. Even if
children have started to extract some of the operational patterns,
these representations are newly developing and are unlikely to be
robust. Thus, even though children in this age range have difficul-
ties inhibiting their representations of information that is associ-
ated with but irrelevant to the task at hand (Dempster, 1992;
Ridderinkhof, van der Molen, Band, & Bashore, 1997), their
performance on equivalence problems should be relatively good
because their representations of the operational patterns are not yet
strong enough to interfere (cf. Munakata, 1998; Shinskey & Mu-
nakata, 2005). As children continue to receive practice with arith-
metic procedures in school in third and fourth grade (ages 8–10),
their representations of the operational patterns gain strength.
Because children in this age range continue to have difficulties
inhibiting their representations of information that is associated
with but irrelevant to the task at hand (Dempster, 1992; Lorsbach,
Katz, & Cupak, 1998), performance on equivalence problems
should decrease during this period. Once children reach fifth grade
and beyond (ages 10–14), they start to become familiar with
several math topics that contradict their knowledge of the opera-
tional patterns (e.g., equivalent fractions, equalities/inequalities,
pre-algebra, algebra). As a result, the operational patterns lose their
predictive power, and children’s representations decrease in
strength. Because children in this age range also improve in their
ability to inhibit their representations of information that is asso-
ciated with but irrelevant to the task at hand (Bjorklund & Har-
nishfeger, 1990; Dempster, 1992), performance on equivalence
problems should improve dramatically. Following this logic, there
should be a U-shaped association between age and performance on
equivalence problems over the elementary school years. This
U-shaped function would also be consistent with at least two other
current theories: the hierarchical competing systems account (Mar-
covitch & Zelazo, 1999, 2006) and the representation shift account
(Church, Kelly, & Lynch, 2000). We consider the specifics of
these theories in the discussion.

Does children’s performance on equivalence problems improve
with age, as many prevailing theories would predict, or is the
association U-shaped? The answer has yet to be determined. As
mentioned previously, many studies have shown that elementary
school children (ages 8–10) do not solve equivalence problems
correctly. There also has been some speculation that children’s
performance improves dramatically sometime between the ages of
9 and 12 (Perry et al., 1988). However, to date there have not been
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any systematic investigations into the association between age and
performance on equivalence problems. Most studies have exam-
ined children within a narrow age range (Alibali & Goldin-
Meadow, 1993), have not analyzed age effects (McNeil & Alibali,
2000; Perry, 1991), or have shown no evidence of an association
between age and performance (Carpenter, Levi, & Farnsworth,
2000; McNeil & Alibali, 2005b; Rittle-Johnson & Alibali, 1999).
The closest exception is a study by Alibali (1999), which reported
that the likelihood of learning a correct strategy after instruction on
equivalence problems was greater for children tested early in the
school year than for those tested late in the school year. However,
this was an unexpected effect, and it was an effect of time of year,
rather than age per se.

As a side note, it should be mentioned that the time-of-year
effect observed by Alibali (1999) would be readily predicted by
accounts that focus on change resistance. Assuming that most
children do not practice their arithmetic skills over summer break,
it is likely that children’s representations of the operational pat-
terns are weaker early in the school year than they are late in the
school year after months of practice with arithmetic operations.
According to a change-resistance account, children’s performance
on equivalence problems should get worse over the course of a
school year as children’s representations of the operational pat-
terns gain strength.

The present article reports two studies designed to investigate
the association between age and performance on equivalence prob-
lems. In both studies, children of various ages were tested on their
ability to solve equivalence problems, such as 7 � 4 � 5 � 7 �
__. Many prevailing theories predict a positive association be-
tween age and performance on equivalence problems, whereas
change-resistance accounts predict a U-shaped association. The
goal was to test these differing predictions.

Study 1

Method

Participants. Eighty-seven children (48 boys, 39 girls; 18 first
graders, 19 second graders, 23 third graders, 27 fourth graders)
participated. Children ranged in age from 6 years 9 months to 10
years 8 months (M � 8 years 10 months). The study was con-
ducted at a public school in a suburb of Pittsburgh, PA during the
last month of the school year. The racial/ethnic makeup of the
school was 4% African American, 1% Hispanic, and 95% White.
Approximately 38% of children received free or reduced-price
lunch.

Procedure. Children completed a paper-and-pencil problem-
solving test consisting of 12 equivalence problems (e.g., 9 � 4 �
3 � 9 � __, 3 � 5 � 7 � __ � 7). Children were tested in their
classroom settings. The average number of children per classroom
during testing was 22. Children’s classroom teachers handed out
the tests at the beginning of their regular math periods. After
handing out the tests, teachers read the following instructions
aloud: “Today you are going to solve some math problems. It’s not
a test or anything, so you won’t be graded. Just do your best. If a
problem seems too hard for you to solve, then you can just give it
your best guess. After you finish solving the problems, turn your
paper over, and sit quietly until everyone has finished.” It took
children between 5–15 min to finish. Teachers collected the tests

after all children had finished. Teachers were told that they were
not allowed to help children with the problems until after all tests
were collected. In the event that a child asked a question during the
test, teachers were instructed to say, “I’m interested in what you
think about the problems. You can just give it your best guess.”

Coding. Children’s problem-solving strategies were coded us-
ing a system developed by Perry et al. (1988). Strategies were
assigned based on the solutions children wrote in the blank. As in
prior work, solutions were coded as reflecting a particular strategy
as long as they were within �1 of the solution that would be
achieved with that particular strategy. Examples of common strat-
egies for the problem “9 � 4 � 3 � 9 � __” are presented in Table
1. In addition to correct strategies, we were particularly interested
in use of the add-all strategy. The add-all strategy corresponds to
one of the operational patterns identified by McNeil and Alibali
(2005b)—the “perform all given operations on all given numbers”
strategy. Commitment to the operational patterns is hypothesized
to increase between the ages of 7 and 9 as children continue to gain
narrow experience with traditional arithmetic in school. Research
suggests that children who use the add-all strategy may be less
likely than children who use other incorrect strategies to benefit
from instruction on mathematical equivalence (McNeil & Alibali,
2005b, Experiment 1).

Results and Discussion

Correctness. Figure 1 presents a frequency plot of the number
of correctly solved equivalence problems (out of 12). The figure
displays the number of children who got zero correct, 1 correct, 2
correct, and so on, up to 12 correct. Performance was poor overall
and not normally distributed, with nearly half of the children (N �
40) getting zero correct. This low level of performance is consis-
tent with prior work (McNeil & Alibali, 2004; Perry et al., 1988).
Because frequency distributions tend to be highly skewed and/or
bimodal in studies of children’s performance on equivalence prob-
lems, nonparametric statistics are typically used to analyze perfor-
mance. Such was the case here. Children were categorized accord-
ing to whether or not they solved at least one problem correctly,
and logistic regression was used to analyze the data.

Logistic regression was used to predict the log of the odds of
solving at least one equivalence problem correctly. Predictor vari-
ables included age linear (in months, centered), age quadratic (in
months, centered), and gender (0 � girl, 1 � boy) as a control
variable. The linear age coefficient was significant when control-
ling for the other predictors, �̂ � 0.066, z � 2.75, Wald (1, N �
87) � 7.59, p � .006. More importantly, as predicted by a
change-resistance account, the quadratic age coefficient was sig-
nificant when controlling for the other predictors, �̂ � 0.0084, z �
4.00, Wald (1, N � 87) � 15.89, p � .001. Gender was not

Table 1
Common Solutions for the Problem 9 � 4 � 3 � 9 � __

Solution Strategy

7 Correct
25 Add all
4 Carry
16 Add to equal sign
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significant when controlling for the other predictors, �̂ � 0.39, z �
0.75, Wald (1, N � 87) � 0.56, p � .45. These results are
summarized in Table 2.

Figure 2 presents the proportion of children who solved at least
one equivalence problem correctly as a function of age (grouped
into bins for illustrative purposes). The predicted U-shaped func-
tion can be seen in the figure. The youngest and oldest children in
the sample were far more likely than children in the middle age
range to solve at least one equivalence problem correctly.

It should be noted that the U-shaped pattern is robust. It does not
depend on the criterion of “at least one correct.” The quadratic age
coefficient remains significant if the criterion is changed to “at
least two correct,” �̂ � 0.0071, z � 3.74, Wald (1, N � 87) �
14.61, p � .001, or “at least three correct,” �̂ � 0.0058, z � 3.05,
Wald (1, N � 87) � 9.33, p � .002. It also remains significant in
a linear regression analysis when number correct (out of 12) is
used as a continuous outcome variable, �̂ � 0.011, t(83) � 3.99,
p � .001. Equally important, the findings hold up to different ways
of representing the predictor variable, age. For example, the qua-
dratic coefficient remains significant even if grade level is used as
the predictor variable instead of age in months, �̂ � 1.175, z �
4.47, Wald (1, N � 87) � 19.98, p � .001. Thus, there is solid
evidence for a U-shaped association between age and use of
correct strategies on equivalence problems in this sample of chil-
dren.

Use of the add-all strategy. According to change-resistance
accounts, children’s performance on equivalence problems wors-
ens between ages 7 and 9 because children become more commit-
ted to the operational patterns they encounter in traditional arith-
metic. One of these operational patterns is the “perform all given
operations on all given numbers” strategy (McNeil & Alibali,
2005b). For example, when presented with a typical addition
problem such as 3 � 4 � 5 � 6 � __, children learn to add up all
the numbers and put the total, 18, in the blank. Children who are
committed to this strategy will solve equivalence problems by
adding up all the numbers (i.e., the add-all strategy). Use of this
add-all strategy should decline in fifth grade and beyond as chil-
dren start to become familiar with several math topics that con-
tradict their knowledge of the operational patterns (e.g., equivalent
fractions, equalities/inequalities, pre-algebra, algebra). Thus, chil-
dren should increase in their use of the add-all strategy between the

ages of 7 and 9, and then decrease in their use of the add-all
strategy thereafter. This pattern corresponds to an inverted
U-shaped association between age and children’s use of the add-all
strategy on equivalence problems.

There are at least two ways to analyze children’s use of the
add-all strategy. One possibility is to consider only incorrect
strategies and then examine the proportion of incorrect strategies
that were add-all. We did this using linear regression. Seven
children were excluded from this analysis because they did not use
any incorrect strategies. Predictor variables included age linear (in
months, centered), age quadratic (in months, centered), and gender
(0 � girl, 1 � boy) as a control variable. The linear age coefficient
was significant when controlling for the other predictors, pr �
�.40, t(76) � �3.83, p � .001. More importantly, as predicted by
a change-resistance account, the quadratic age coefficient was
significant when controlling for the other predictors, pr � �.26,
t(76) � �2.32, p � .02. Gender was not significant when con-
trolling for the other predictors, pr � .12, t(76) � 1.01, p � .31.

Another way to examine use of the add-all strategy is to exam-
ine the total number of problems solved using the strategy (out of
12). We did this using linear regression. Predictor variables were
the same as in the previous analysis. The linear age coefficient was
significant when controlling for the other predictors, pr � �.45,
t(83) � �4.56, p � .001. And once again, the quadratic age
coefficient was significant when controlling for the other predic-
tors, pr � �.30, t(83) � �2.88, p � .005. Gender was not
significant when controlling for the other predictors, pr � .065,
t(83) � 0.59, p � .55. Thus, both ways of analyzing use of the
add-all strategy yielded similar results. Findings correspond to the
predicted inverted U-shaped pattern.

Is everything U-shaped in this sample? Thus far, we have
shown a U-shaped association between age and correctness, and an
inverted U-shaped association between age and use of the add-all
strategy. Both of these findings support a change-resistance ac-
count. However, it is difficult to believe that 7-year-olds perform
better than 9-year-olds on the target problems, which are essen-
tially pre-algebra problems. Given the unintuitive nature of the
findings, one might suspect that there is something peculiar about
the children who participated in the study. The 7-year-olds may
have been unusually accelerated, or the 9-year-olds may have been
unusually delayed, or both. It would be problematic if the associ-
ation between age and performance on all math tasks were
U-shaped in this sample.

To alleviate this concern, it would help to show that there is not
a U-shaped association between age and performance on another
math task (e.g., calculating arithmetic facts, telling time, making
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Figure 1. Frequency plot of the number of correctly solved equivalence
problems (out of 12).

Table 2
Logistic Regression Analysis of Children’s (Ages 7–11)
Performance on Equivalence Problems

Predictor �̂ z Wald p

Age linear (in months, centered) 0.066 2.75 7.59 .006
Age quadratic (in months,

centered) 8.4 � 10�3 4.00 15.89 � .001
Gender (girl � 0, boy � 1) 0.39 0.75 0.56 .45

Note. Model predicts the log of the odds of solving at least one problem
correctly.
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change, etc.). Although we did not have the foresight to test
children’s performance on several different math tasks, it was
possible for us to get a rough estimate of children’s addition skills,
which should not show a U-shaped pattern. To get a rough estimate
of children’s addition skills, we examined whether children made
arithmetic errors when carrying out the add-all or add-to-equal
strategies (e.g., writing 24 or 17 in the blank for the problem 9 �
4 � 3 � 9 � __). We considered all children who used the add-all
or add-to-equal strategy on at least one problem (N � 63). On
average, these children used the add-all or add-to-equal strategy on
55% of the problems they solved. Of these children, 42 (67%) did
not make any arithmetic errors when carrying out the strategies; 17
(27%) made one arithmetic error; 2 (3%) made two errors, and 2
(3%) made three errors. None of the children made greater than
three arithmetic errors. We used logistic regression to predict the
log of the odds of making an arithmetic error. Predictor variables
included age linear (in months, centered), age quadratic (in
months, centered), and gender (0 � girl, 1 � boy) as a control
variable. None of the predictors were significant; if anything, there
was a slight trend for the likelihood of making an arithmetic error
to decrease linearly with age: linear age coefficient, �̂ � �0.043,
z � �1.59, Wald (1, N � 63) � 2.46, p � .12; quadratic age
coefficient, �̂ � 2.7 � 10�3, z � 0.15, Wald (1, N � 63) � 0.022,
p � .88; gender, �̂ � 0.37, z � 0.066, Wald (1, N � 63) � 4.3 �
10�3, p � .95.

Thus, the U-shaped pattern does not hold for all measures of
math performance in this sample. This finding helps to alleviate
concerns about the participating children. However, some readers
may still not be convinced. It is still possible that decrements in
performance on equivalence problems between the ages of 7 and 9
are specific to these particular children. Thus, a second study was
conducted with another sample of children. The goal of the second
study was to see if the decrements in performance between the
ages of 7 and 9 could be replicated with a different group of
children under a different set of conditions. Few theories would
predict performance decrements in math between the ages of 7 and

9. In contrast, most prevailing theories would predict improve-
ments between the ages of 9 and 11. Thus, the second study
focused on children between the ages of 7 and 9, not the entire
7–11 age range.

Study 2

Method

Participants. Thirty-five children (16 boys, 19 girls; 7 second
graders, 28 third graders) participated. Children ranged in age from
7 years 0 months to 8 years 11 months (M � 8 years 4 months).
The study was conducted at a public school in a suburb of Raleigh,
NC in the second month of the school year. The racial/ethnic
makeup of the school was 24% African American, 1% Asian, 6%
Hispanic, and 69% White. Approximately 37% of children re-
ceived free or reduced-price lunch.

Procedure. The procedure was identical to that of Study 1,
with one exception. Teachers in Study 2 gave children two brief
lessons about mathematical equivalence prior to the paper-and-
pencil problem-solving test. This supplement helped to make the
children across the age range more comparable in terms of back-
ground knowledge about the equal sign before they solved the
equivalence problems. The lessons were modeled after the lessons
in McNeil (2004). During each lesson, teachers presented children
with a correctly solved equation (e.g., 15 � 13 � 28, 1 foot � 12
inches) and told them to “notice that whatever is on one side of the
equal sign has to be the same amount as whatever is on the other
side of the equal sign.” Each child received this instruction in the
context of four different equations, but none received instruction in
the context of a mathematical equivalence problem. Previous re-
search has shown that conceptual instruction on the meaning of the
equal sign improves children’s performance on equivalence prob-
lems (Rittle-Johnson & Alibali, 1999). Thus, the instruction should
improve children’s overall performance on the equivalence prob-
lems.

Figure 2. Proportion of children who solved at least one equivalence problem correctly as a function of age.
y � years; m � months.
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Coding. Coding was identical to that in Study 1.

Results and Discussion

Even with the addition of the brief lessons on the concept of
mathematical equivalence prior to the problem-solving test, per-
formance was still very poor overall, with over half of the children
(N � 19) getting zero correct. This poor performance after brief
classroom-based equal sign instruction is consistent with prior
work (e.g., McNeil, 2004). Logistic regression was used to exam-
ine the association between age (in months, centered) and the
likelihood of solving at least one equivalence problem correctly.
The likelihood of solving at least one problem correctly decreased
with age, �̂ � �0.17, z � �2.34, Wald (1, N � 35) � 5.48, p �
.02. Figure 3 presents the proportion of children who solved at
least one equivalence problem correctly as a function of age
(grouped into bins for illustrative purposes). The predicted nega-
tive linear association can be seen in the figure. Specifically, the
proportion of children who solved at least one problem correctly
decreased from age 7 to 9. This result replicates the decrements in
performance between the ages of 7 and 9 that were shown in Study
1. Taken together with results of Study 1, this finding suggests that
performance on mathematical equivalence problems declines be-
tween the ages of 7 and 9 before it starts to improve thereafter.

General Discussion

Despite decades of research on children’s (mis)understanding of
mathematical equivalence, the current studies were the first to
investigate the association between age (7–11 years) and perfor-
mance on equivalence problems. The absence of previous studies
may be due to the fact that most people assume that the association
is positive (and thus, trivial). However, the two studies presented
here revealed that the association is U-shaped. In the first study,
performance on equivalence problems declined between the ages

of 7 and 9 and improved between the ages of 9 and 11. The
decrements in performance between ages 7 and 9 were replicated
in a second study. These findings challenge intuition and several
prevailing theories, but they support change-resistance accounts.

A number of prevailing theories of learning and development in
the domain of mathematics attribute children’s difficulties with
math to something that children lack (e.g., advanced logical struc-
tures, a mature working memory system, proficiency with basic
arithmetic facts). In contrast, change-resistance accounts suggest
that difficulties are due, at least in part, to the knowledge that
children have. According to this view, early and prolonged prac-
tice with arithmetic procedures hinders performance on equiva-
lence problems because equivalence problems do not map onto to
the operational patterns learned in arithmetic.

Children focus on arithmetic procedures in the early school
years, and they encounter the same operational patterns repeatedly,
virtually without exception (Seo & Ginsburg, 2003). Through this
experience, children construct long-term memory representations
of the operational patterns. Eventually, these internal representa-
tions become strong enough to interfere with information that is
actually present in an external problem (Bruner & Postman, 1949;
Gray & Fu, 2001; McNeil & Alibali, 2004; Munakata, 1998).
Because equivalence problems do not map onto children’s repre-
sentations of the operational patterns, children must ignore or
override their representations in order to solve equivalence prob-
lems correctly.

Based on the developmental and experiential changes that take
place across the elementary school years, children’s susceptibility
to interference from their representations of the operational pat-
terns should be greatest around age 9. According to change-
resistance accounts, this is why performance on equivalence prob-
lems is at a minimum at this age. However, there are at least three
alternative explanations for the observed poor performance on
equivalence problems at age 9. First, arithmetic proficiency could

Figure 3. Proportion of children who solved at least one equivalence problem correctly as a function of age.
y � years; m � months.
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drop substantially at this age. There is some evidence for this
claim. For example, Miller and Paredes (1990) suggested that
proficiency with addition may decrease when children start learn-
ing multiplication between the ages of 8 and 10. However, it is
unclear how to interpret this finding because several other studies
(e.g., Barrouillet & Lepine, 2005; Geary et al., 1996; Hecht et al.,
2001; Svenson & Sjoberg, 1983) have shown increases in arith-
metic proficiency over the course of the early elementary school
years.

The second possibility is that the association between arithmetic
proficiency and performance on equivalence problems could, it-
self, be U-shaped. In this case, arithmetic proficiency would in-
crease over the course of the elementary school years, but perfor-
mance on equivalence problems would suffer at intermediate
levels of arithmetic proficiency. This hypothesis is consistent with
Marcovitch and Zelazo’s (1999, 2006) view that children’s behav-
ior is controlled by two hierarchical competing systems: a
response-based system and a conscious representational system.
Although Marcovitch and Zelazo’s hierarchical competing sys-
tems model was developed to explain performance on the A-not-B
search task, it can be applied to performance on equivalence
problems. Specifically, it suggests that as arithmetic proficiency
increases, the response-based system increases in its tendency to
apply the add-all strategy until an asymptote is reached. At the
same time, cognitive resources are “freed” and made available for
conscious reflection. As opportunities for conscious reflection
increase, the likelihood of understanding the problem also in-
creases, and eventually, the incorrect add-all response is overrid-
den by the conscious representational system (cf. Crowley,
Shrager, & Siegler, 1997). This account suggests that intermediate
levels of arithmetic proficiency may correspond to what Hatano
(1988) has called “routine” expertise (see also Dowker, Flood,
Griffiths, Harriss, & Hook, 1996). Routine expertise is associated
with inflexible application of knowledge. Thus, children who have
intermediate levels of arithmetic proficiency may apply their
knowledge of arithmetic procedures inflexibly when they encoun-
ter an equivalence problem. As children increase their proficiency
beyond the intermediate level, however, they may eventually de-
velop “adaptive” expertise and exhibit the flexibility of true ex-
perts (Dowker, 1992; Hatano, 1988). Future work will need to
specify the association between arithmetic proficiency and perfor-
mance on equations. In this spirit, my colleagues and I are cur-
rently manipulating arithmetic proficiency by having individuals
practice arithmetic facts (or not) before they solve equivalence
problems. Results will inform our understanding of the effects of
arithmetic proficiency on equation-solving performance.

The third possibility is that there is a more general developmen-
tal factor behind the U-shaped association between age and per-
formance on equivalence problems. Specifically, children may go
through a developmental shift in their representational skills
around the age of 9 and 10 years that causes them to rely rigidly
on customs and conventions. Consider a study by Church, Kelly,
and Lynch (2000). They performed two experiments to examine
how participants of various ages process messages that contain
mismatching speech and gesture. In their first experiment, they
presented participants with a videotape of children speaking and
gesturing about a concept. Then, they asked participants to recall
what they saw. Nine- and 10-year-old participants focused exclu-
sively on the information contained in speech, whereas younger

and older participants attended to both channels. According to the
authors, one reason the 9- and 10-year-old children focused on
speech was because it is the customary channel of communication.
According to this rationale, the 9-year-old children in the present
study may have been more likely to add up all the numbers in the
equivalence problems because adding up all the numbers is the
customary way to solve a math problem. This is an intriguing
hypothesis that will need to be addressed in future work.

Taken together with other studies that document U-shaped de-
velopmental patterns (e.g., Church, Kelly, & Lynch, 2000; Namy,
Campbell, & Tomasello, 2004), the current study suggests that
performance does not always improve with age, as many theories
(including intuition) would suggest. Rather, performance some-
times gets worse before it gets better. As a general rule, U-shaped
developmental functions (like the one revealed here) provide the
field with insights about the factors that may or may not drive
development (Siegler, 2004). They indicate that cognitive devel-
opment may not always be driven by simple, monotonic increases
in some attribute of the cognitive system (e.g., working memory
capacity or arithmetic skill). Instead, development is driven by
complex interactions among cognitive structures (e.g., long-term
memory representations), cognitive processes (e.g., resistance to
interference), and features of the external environment (e.g., prob-
lem type). Detailed investigations of these interactions will lead to
a deeper understanding of the mechanisms that drive (and con-
strain) cognitive development across the life span.
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