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ABSTRACT—Most elementary school children in the United

States have difficulties understanding mathematical equiv-

alence in symbolic form (e.g., 3 + 4 = 5 + 2, 7 = 7).

This is troubling because a formal understanding of math-

ematical equivalence is necessary for success in algebra

and all higher level mathematics. Historically, children’s

difficulties with mathematical equivalence have been

attributed to something that children lack relative to

adults (e.g., domain-general logical structures, working

memory capacity, proficiency with basic arithmetic facts).

However, a change–resistance account suggests that chil-

dren’s difficulties are due to inappropriate generalization

of knowledge constructed from overly narrow experience

with arithmetic. This account has not only enhanced our

understanding of the nature of children’s difficulties with

mathematical equivalence but also helped us identify

some of the malleable factors that can be changed to

improve children’s understanding of this concept.

KEYWORDS—mathematics learning; conceptual develop-

ment; arithmetic practice

Children often exhibit misconceptions when solving mathemat-

ics problems. For example, preschoolers think the volume of

liquid in a beaker changes after it is poured into a taller, thinner

beaker (Piaget & Szeminska, 1941/1995), and elementary school

children assume that subtraction always entails subtracting the

smaller digit from the larger one (Brown & VanLehn, 1980/

1988). Misconceptions like these not only offer a window into

how the mind works, but also inspire innovative interventions.

For decades, scientists have studied elementary school chil-

dren’s misconceptions in their understanding of mathematical

equivalence. Mathematical equivalence is the relation between

two quantities that are the same (Kieran, 1981), and its symbolic

form specifies that the two sides of an equation are equal and

interchangeable (e.g., 3 + 4 = 5 + 2). Formally understanding

mathematical equivalence means understanding the equal sign

as a relational symbol, comprising both sameness and substitu-

tive components (Jones, Inglis, Gilmore, & Evans, 2013; Knuth,

Stephens, McNeil, & Alibali, 2006; Rittle-Johnson, Matthews,

Taylor, & McEldoon, 2011). Children who understand mathe-

matical equivalence do not view an arithmetic problem simply

as a signal to carry out a procedure; instead, they look at the

problem in its entirety and identify the relation being expressed

before beginning to calculate (Jacobs, Franke, Carpenter, Levi,

& Battey, 2007).

Mathematical equivalence is regarded widely as necessary for

success in algebra (Carpenter, Franke, & Levi, 2003; Knuth

et al., 2006; National Council of Teachers of Mathematics,

2000), but many children have trouble understanding it (Baroo-

dy & Ginsburg, 1983; Falkner, Levi, & Carpenter, 1999; Kieran,

1981). Although these difficulties are common in several coun-

tries (DeCorte & Verschaffel, 1981; Humberstone & Reeve,

2008; Jones et al., 2013; Molina, Castro, & Castro, 2009; Sher-

man & Bisanz, 2009), this review focuses on research conducted

in the United States. Misconceptions are most apparent when

children are asked to solve equations with operations on both

sides of the equal sign (e.g., 3 + 7 + 5 = 3 + __; Perry,

Church, & Goldin-Meadow, 1988). Although these mathematical

equivalence problems are not typically included in traditional
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K–8 curricula in the United States (McNeil et al., 2006;

Powell, 2012; Seo & Ginsburg, 2003), adults are usually

surprised to discover that only about 20% of children (aged

7–11) in this country solve the problems correctly (in

comparison, more than 90% of children in China solve such

problems correctly; Li, Ding, Capraro, & Capraro, 2008).

Moreover, interventions may not easily correct children’s mis-

conceptions. Some children fail to learn from interventions (e.g.,

Jacobs et al., 2007; Rittle-Johnson & Alibali, 1999). Others

seem to learn, but then fail to transfer their knowledge to prob-

lems that differ on surface features (e.g., Alibali, Phillips, &

Fischer, 2009; Perry, 1991). Still other children seem to learn

and transfer, but then revert to their original incorrect ways of

thinking a few weeks after learning (e.g., Cook, Mitchell, &

Goldin-Meadow, 2008; McNeil & Alibali, 2000).

EXPLAINING CHILDREN’S DIFFICULTIES

Why do children have such difficulties with mathematical equiv-

alence? Historically, researchers have attributed children’s diffi-

culties in this area to structures or functions that children lack

relative to adults, such as underdeveloped domain-general logi-

cal structures for coordinating equivalence relations (Kieran,

1981; Piaget & Szeminska, 1941/1995), an immature working

memory system (Case, 1978), or a lack of proficiency with basic

arithmetic facts (Kaye, 1986).

Although such factors may play a role in children’s difficulties

with math equivalence, children’s early experiences with arith-

metic also play a part (Baroody & Ginsburg, 1983; Cobb, 1987;

Li et al., 2008; McNeil & Alibali, 2005b; Seo & Ginsburg,

2003). Davydov (1969/1991) was the first to show that children

as young as first grade could learn algebraic concepts, including

mathematical equivalence. Since then, studies have shown that

children in China, Korea, and Turkey better understand math

equivalence than their peers of the same age in the United

States (Capraro et al., 2010). Moreover, even in studies within

the United States, extensive conceptual instruction can improve

understanding of mathematical equivalence in some children

(e.g., Baroody & Ginsburg, 1983; Jacobs et al., 2007; Saenz-

Ludlow & Walgamuth, 1998). These findings suggest that under

some circumstances, young children can understand mathemati-

cal equivalence.

A change–resistance account has explained how the early

learning environment can hinder children’s understanding of

mathematical equivalence (McNeil & Alibali, 2005b). This

account was inspired by classic top-down approaches to learning

and cognition (e.g., Luchins, 1942; Rumelhart, 1980), and by

developmental theories that emphasize the role of statistical

learning in development (e.g., Rogers, Rakison, & McClelland,

2004; Saffran, 2003). According to this account, children detect

and extract (often subconsciously and incidentally) the patterns

they encounter routinely in traditional arithmetic and construct

long-term memory representations that serve as their default

representations in mathematics. Although such representations

are typically beneficial, they can become entrenched, and learn-

ing difficulties arise when information to be learned overlaps

with, but does not map directly onto, entrenched patterns (e.g.,

Bruner, 1957; Zevin & Seidenberg, 2002). This account sug-

gests that the knowledge children construct early in a domain

plays a central role in shaping and constraining development

(cf. Munakata, 1998; Thelen & Smith, 1994). It attributes chil-

dren’s difficulties with mathematical equivalence primarily to

constraints and misconceptions that emerge as a consequence of

prior learning, rather than to general conceptual, procedural, or

working memory limitations in childhood.

Consistent with the change–resistance account, studies have

shown that children’s difficulties with mathematical equivalence

stem from their reliance on patterns encountered routinely in

arithmetic (McNeil & Alibali, 2004, 2005b). In the United

States, children learn arithmetic in a procedural fashion for

years before they learn to reason relationally about equations.

Moreover, arithmetic problems are usually presented with opera-

tions to the left of the equal sign and the answer to the right

(e.g., 3 + 4 = 7; McNeil et al., 2006; Seo & Ginsburg, 2003), a

format that fails to highlight the interchangeable nature of the

two sides of an equation. As a result of this narrow experience,

children extract at least three operational patterns that do not

generalize beyond arithmetic (McNeil & Alibali, 2005b): First,

children learn to expect all operations to be on the left side of a

math problem followed by the equal sign and an answer blank

at the end (Alibali et al., 2009; Cobb, 1987; McNeil & Alibali,

2004). Second, they learn to perform all given operations on all

given numbers (McNeil & Alibali, 2005b). And third, they learn

to interpret the equal sign operationally as a symbol to do some-

thing (Baroody & Ginsburg, 1983; Behr, Erlwanger, & Nichols,

1980; Kieran, 1981; McNeil & Alibali, 2005a). As these repre-

sentations become entrenched, children rely on them as their

default representations when they encounter novel mathematics

problems.

Although relying on these operational patterns may be helpful

when children are given traditional arithmetic problems (e.g.,

3 + 4 = __), it is detrimental when children have to encode,

interpret, or solve problems of mathematical equivalence. For

example, when asked to reconstruct the problem 7 + 4 +
5 = 7 + __ after viewing it briefly, many children claim that

they saw operations on the left side and write 7 + 4 + 5 +
7 = __ (McNeil & Alibali, 2004). When asked to define the

equal sign—even in the context of a mathematical equivalence

problem—many children treat it like an arithmetic operator

(like + or �) that means they should calculate the total (McNeil

& Alibali, 2005a). When asked to solve the problem

7 + 4 + 5 = 7 + __, many children perform all given opera-

tions on all given numbers and put 23 (instead of 9) in the blank

(McNeil, 2007; Rittle-Johnson, 2006). These findings support

the change–resistance account and suggest that children’s diffi-

culties with mathematical equivalence are due partly to inappro-
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priate generalization of knowledge constructed from overly nar-

row experience with traditional arithmetic.

NOVEL PREDICTIONS OF THE CHANGE–RESISTANCE
ACCOUNT

The change–resistance account also allows us to make novel

predictions, many of which have been supported empirically.

For example, most theories predict that performance on math

equivalence problems should improve with age. Indeed, “‘per-

formance improves with age’ is as close to a law as any general-

ization that has emerged from the study of cognitive

development” (Siegler, 2004, p. 2). However, the change–resis-
tance account predicts—and studies have shown—that perfor-

mance actually declines in the early school years before it

improves (McNeil, 2007). This is because, as children progress

from first to third grade, they continue to gain narrow practice

with arithmetic, so they are strengthening the very knowledge

structures hypothesized to hinder understanding of mathemat-

ical equivalence. Thus, similar to other U-shaped develop-

mental patterns—such as scale errors (DeLoache, Uttal, &

Rosengren, 2004), the ability to map arbitrary gestures to ref-

erents (Namy, Campbell, & Tomasello, 2004), and the ability

to process contradictory messages simultaneously (Church,

Kelly, & Lynch, 2000)—understanding mathematical equiva-

lence does not follow the tenet that performance improves with

age.

The change–resistance account also challenges the wide-

spread belief that practice with basic arithmetic facts improves

performance on higher level math problems. This belief is rooted

in the decomposition thesis (Anderson, 2002), which suggests

that a complex skill can be decomposed into component subs-

kills and that practice on those subskills facilitates learning and

carrying out the complex skill. The logic is simple: When learn-

ers lack proficiency with the subskills, their cognitive resources

are committed to the step-by-step execution of those subskills

and are largely unavailable for other processes, such as encod-

ing novel problem formats or generating new strategies. In con-

trast, when learners have sufficient practice with subskills,

cognitive resources can be allocated to other processes (e.g.,

Kaye, 1986). These ideas have been invoked to advocate for

back-to-basics math instruction, which maintains that perfor-

mance in algebra can be improved by drilling children on

arithmetic facts until they are proficient. However, the

change–resistance account predicts that concentrated practice

with traditional arithmetic hinders understanding of mathemati-

cal equivalence because it activates and strengthens narrow rep-

resentations of the operational patterns.

A series of experiments with undergraduates who had

attended elementary school in the United States (McNeil, Rittle-

Johnson, Hattikudur, & Petersen, 2010) supported this predic-

tion. Participants were randomly assigned either to an arithmetic

practice condition (e.g., 3 + 4) or to one of several control

conditions (e.g., no input, color mixing, algebra practice). Then

they solved mathematical equivalence problems under speeded

conditions. As predicted, participants were less likely to solve a

mathematical equivalence problem correctly after practicing

arithmetic than after participating in one of the control condi-

tions. This result suggests that practice with arithmetic activates

overly narrow representations that hinder performance on mathe-

matical equivalence problems. It also suggests that even edu-

cated adults, who have years of experience with arithmetic and

algebra, have not fully integrated their knowledge of arithmetic

with their knowledge of algebra.

The consequences of traditional arithmetic practice are unac-

ceptable, but eliminating arithmetic practice altogether is not a

viable alternative. Children need to know arithmetic before they

can solve higher order mathematics problems correctly. How-

ever, acquiring operational patterns is not inevitable. As men-

tioned previously, children in China do not extract operational

patterns (Li et al., 2008), and undergraduates who attended ele-

mentary school in Asian countries do not solve mathematical

equivalence problems incorrectly under speeded conditions,

even after practicing arithmetic (McNeil et al., 2010).

The change–resistance account predicts—and research has

shown—that understanding mathematical equivalence can be

improved by modifying arithmetic practice to be less narrow and

more in line with the underlying concepts. Specifically, three

modifications help: (a) presenting arithmetic problems in a non-

traditional format that puts operations on the right side (e.g.,

__ = 9 + 8; McNeil, Fyfe, Petersen, Dunwiddie, & Brletic-

Shipley, 2011), (b) organizing problems into practice sets based

on equivalent values (e.g., 2 + 5 = __, 3 + 4 = __,

6 + 1 = __; McNeil et al., 2012), and (c) using relational terms

such as is equal to and is the same amount as in place of the

equal sign in some practice problems (Chesney, McNeil, Peter-

sen, & Dunwiddie, 2014).

These three modifications were incorporated into a nontradi-

tional arithmetic practice workbook and compared experimen-

tally to an analogous traditional arithmetic practice workbook in

second-grade classrooms (McNeil, Fyfe, & Dunwiddie, 2014).

Children within classrooms were randomly assigned to use one

of the two workbooks for 15 min a day, 2 days a week, for

12 weeks. As predicted, children who used the nontraditional

workbook had a greater understanding of mathematical equiva-

lence than children who used the traditional workbook, and this

advantage persisted for about 5–6 months after the workbook

practice ended. Thus, simple changes to the format and organi-

zation of arithmetic practice in a naturalistic classroom can

improve children’s understanding of mathematical equivalence.

Although modified arithmetic practice helps children under-

stand mathematical equivalence, such modifications may be

inadequate to eradicate reliance on entrenched operational pat-

terns. Children in the United States may interpret addition infor-

mally as a unidirectional process even before they start formal

schooling (Baroody & Ginsburg, 1983), and they start to apply
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the operational patterns to arithmetic problems as early as first

grade (e.g., Falkner et al., 1999). Consequently, in these

children, arithmetic problems may activate representations of

the operational patterns to some degree, regardless of the format

in which the problems are presented. Thus, when teaching chil-

dren about the equal sign, teachers may need to remove arith-

metic altogether and present the equal sign in other contexts

(e.g., 28 = 28) first, so children can solidify a relational view

before moving on to a variety of formats of arithmetic problems

(Baroody & Ginsburg, 1983; Renwick, 1932).

This is how the equal sign is introduced in China where, as

stated, more than 90% of children solve mathematical equiva-

lence problems correctly (Capraro et al., 2010). This discrep-

ancy in understanding is partly due to differences in both the

format and sequence of problems that children learn (Li et al.,

2008). For example, in contrast to mathematics textbooks in the

United States, math textbooks in China often introduce the

equal sign in a context of equivalence relations first and only

later embed the sign within mathematical equations involving

arithmetic operators and numbers. A classroom-based experi-

ment in the United States supported this idea (McNeil, 2008).

Children were randomly assigned to learn about the meaning of

the equal sign while looking at either arithmetic problems (e.g.,

15 + 13 = 28) or nonarithmetic problems (e.g., 28 = 28). As

predicted, children learned more when lessons were given out-

side of an arithmetic context than when they were given in an

arithmetic context. Thus, educators may want to introduce the

equal sign in the context of equivalence relations before embed-

ding it within equations involving arithmetic.

LOOKING AHEAD

Despite progress over the past two decades in understanding

children’s difficulties with mathematical equivalence, at least

three critical questions remain. First, what are the origins of

individual differences in children’s early understanding of math-

ematical equivalence? We know that most children in the Uni-

ted States struggle to understand mathematical equivalence;

however, a substantial minority develops an accurate formal

understanding, despite attending the same schools and having

the same narrow experiences with arithmetic. Researchers have

not addressed the factors that give rise to these individual differ-

ences. Longitudinal designs should assess which skills at the

start of formal schooling predict children’s understanding of

mathematical equivalence in elementary school.

Second, what are the long-term consequences of having diffi-

culties with mathematical equivalence? Most researchers

assume that a greater understanding of mathematical equiva-

lence in the early grades leads to more success in mathematics

as children progress through school, into algebra, and beyond.

However, this assumption has never been directly tested, mak-

ing it difficult to determine if improving children’s understand-

ing should be a priority. Researchers should assess whether

children’s understanding of math equivalence in the early school

years predicts math achievement and algebra readiness in

subsequent years, after controlling for other predictors such as

IQ and socioeconomic status.

Third, what combination of lessons and activities helps all

children achieve deep, long-lasting understanding of mathemati-

cal equivalence? Several small-scale component interventions

have helped improve some children’s understanding of mathe-

matical equivalence when compared to control interventions,

but none has produced mastery-level understanding in most

children. Researchers must work with teachers to develop a

comprehensive intervention that helps all children construct a

mastery–level understanding of math equivalence.

CONCLUSION

Many children struggle to understand mathematical equivalence.

Children’s misconceptions were once attributed to something

that children lack relative to adults. However, the change–resis-
tance account attributes them, in part, to the inappropriate gen-

eralization of overly narrow arithmetic knowledge. This account

not only highlights the role of the early learning environment in

establishing misconceptions that shape and constrain develop-

ment, but also refines our understanding of the basic psychologi-

cal processes involved in mathematical thinking (e.g., how

practice with subskills affects performance, how new knowledge

is integrated with old knowledge). The account also makes

unique predictions about ways to structure the learning environ-

ment to help children learn mathematical equivalence, thus pro-

viding research-based solutions to a critical educational

problem.
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