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This study investigated how understanding of the equal sign changes as a function of
experience in mathematics and variations in context. Students with different levels of
mathematics experience (elementary school, seventh grade, undergraduate, and
graduate) were randomly assigned to view the equal sign in one of three contexts: (a)
equal sign alone, =; (b) typical addition problem, 4 + 8 + 5 + 4 = __; or (c) equiva-
lence problem, 4 + 8 + 5 = 4 + __. Students were asked to define the equal sign and to
rate six fictitious students’ definitions of the equal sign. Elementary school students
interpreted the equal sign as an operational symbol meaning the answer or the total in
all contexts, whereas undergraduate and graduate students viewed it as a relational
symbol of equivalence in all contexts. Seventh-grade students interpreted the equal
sign as an operational symbol in the alone and addition contexts but as a relational
symbol of equivalence in the equivalence context. Results highlight that the shape of
knowledge change depends on the context in which the knowledge is elicited. Fur-
thermore, the context may influence whether newly emerging ideas are activated.

Studies of cognitive development are often designed to characterize what people
know at different points in developmental time. Studies performed in this tradition
imply that individuals either have or lack knowledge of a particular concept (e.g.,
children lack knowledge of the conservation of quantity before age 7 but once they
reach age 7, they have knowledge of the conservation of quantity). Upon closer in-
spection, however, it has become increasingly clear that knowledge is more com-
plicated than that. Contemporary theories of knowledge change (e.g., Barsalou,
1982, 1993; Munakata, McClelland, Johnson, & Siegler, 1997; Thelen & Smith,
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1994) suggest that an individual’s knowledge of a concept may depend on the con-
text in which the knowledge is elicited. Individuals may understand a concept long
before that understanding is reflected in their behavior in a particular context.
Equally important, individuals may understand little about a concept but behave as
if they do in certain contexts. In this article, we argue that it is essential to consider
the context in which knowledge is elicited before drawing conclusions about what
people at different experience levels know.

Researchers sometimes overlook the context-dependent nature of knowledge
when they are charting how knowledge of a particular concept changes with expe-
rience. As a result, there have been gross discrepancies in what knowledge gets at-
tributed to people at different experience levels. One example, which has implica-
tions for the way mathematics is taught in schools, has to do with people’s
knowledge of the equal sign. Some researchers have suggested that children as
young as age 11 have a sophisticated interpretation of the equal sign (Perry,
Church, & Goldin-Meadow, 1988), whereas others have speculated that even un-
dergraduates have a poor interpretation of the equal sign (Kieran, 1981). In this
study, we explore the hypothesis that these discrepant conclusions are due, at least
in part, to differences in the contexts in which knowledge of the equal sign has
been elicited.

The equal sign is arguably the most fundamental symbol in all of mathematics
and science. In mathematics, it often is used to define an equivalence relation (e.g.,
3 + 4 = 7; x2 – 9 = [x + 3] [x – 3]), indicating that the expression on the left is the
same quantity as the expression on the right. In science, the equal sign is used to
express key relationships, such as distance = rate × time, E = mc2, and 1 mole =
6.023 × 1023 atoms. Students must interpret the equal sign as a relational symbol of
equivalence if they are to understand certain areas of advanced mathematics and
science (e.g., functions).

Despite the importance of the equal sign, traditional kindergarten through
12th-grade American mathematics lessons rarely focus directly on its meaning. In-
stead, students have to construct an interpretation of the equal sign based on their ex-
periences with it. Not surprisingly, many elementary school students (ages 6–11
years), who have limited experience with mathematics, do not interpret the equal
sign in sophisticated ways. Instead of interpreting the equal sign as a relational sym-
bol of equivalence, they tend to interpret it as an operational symbol (Baroody &
Ginsburg, 1983; Behr, Erlwanger, & Nichols, 1980; Kieran, 1981; McNeil &
Alibali, 2000; Rittle-Johnson & Alibali, 1999; Seo & Ginsburg, 2003). When asked
to define the equal sign, they often say it means “the total” or “the answer”, and when
asked to rate the “smartness” of various definitions, they rate definitions such as “the
total”or“theanswer”assmarter thandefinitionssuchas“twoamountsare thesame”
or “equal to” (McNeil & Alibali, 2000, 2002; Rittle-Johnson & Alibali, 1999).

Elementary school students’ interpretation of the equal sign parallels their per-
formance solving mathematical equations. Their failure to grasp the relational
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meaning of the equal sign is particularly salient on equations that have operations
on both sides of the equal sign. For example, when presented with the equation 3 +
4 = 5 + 2, most elementary school students say that the equation does not make
sense (Behr et al., 1980; see also Baroody & Ginsburg, 1983; Rittle-Johnson &
Alibali, 1999). Some students even request that the equation be corrected to 3 + 4 +
5 + 2 = 14, so that it corresponds to their operational interpretation (Behr et al,
1980).

Elementary school students also have great difficulties when they are presented
with equations that require them to solve for an operand on the right side of the equal
sign (e.g., 3 + 4 + 5 = 3 + __). Equations such as these have been called mathematical
equivalence problems in prior work (Alibali, 1999; Perry et al., 1988). When asked
to reconstruct mathematical equivalence problems after viewing them for a brief pe-
riod of time, many students reconstruct the problems as if they were typical addition
problems (e.g., they reconstruct 3 + 4 + 5 = 3 + __ as 3 + 4 + 5 + 3 = __; McNeil &
Alibali,2002).Thissuggests that students think that theequal signandblankmustgo
together at the end of a problem. When asked to solve equivalence problems, the vast
majority of students use incorrect strategies, such as adding up all the numbers in the
problem and putting the total amount in the blank (e.g., writing 15 in the blank when
solving 3 + 4 + 5 = 3 + __; Perry, et al., 1988; McNeil & Alibali, 2000, 2002). This
type of poor performance is consistent with elementary school students’ interpreta-
tion of the equal sign as the total or the answer.

Although many elementary school students interpret the equal sign as the total
or the answer, some more advanced students eventually come to interpret the equal
sign as a relational symbol of equivalence. Otherwise, we would not have physi-
cists discovering, understanding, and solving complex equations such as those in-
volving the conservation of energy. We can thus define the boundaries of change in
students’ thinking about the equal sign. The immature state of thinking is that the
equal sign denotes an operation like addition or subtraction and the advanced state
of thinking is that the equal sign denotes an equivalence relation between two
quantities. Little is known, however, about how and when students’ thinking pro-
gresses from the immature state to the advanced state.

One widely held hypothesis is that the relational interpretation of the equal
sign emerges in middle school, sometime between the ages of 11 and 13. Evi-
dence supporting this hypothesis comes from middle-school students’ perfor-
mance solving equations. Unlike younger students, middle-school students tend
to be accurate in their judgments of the truth-value of equations that have opera-
tions on both sides of the equal sign (e.g., 3 + 4 = 5 + 2 is true and 3 + 2 = 5 + 3
= 8 is false; Kieran, 1981). Additionally, it is assumed that most middle-school
students are able to solve equivalence problems correctly (e.g., 3 + 4 + 5 = 3 +
__; Perry et al., 1988). Satisfactory performance solving equations such as these
suggests that middle-school students interpret the equal sign as a relational sym-
bol of equivalence.
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Contradictory evidence comes from middle-school students’own definitions of
the equal sign. When middle-school students are asked to define the equal sign, most
provide operational definitions similar to those provided by elementary school stu-
dents. Very few middle-school students provide relational definitions (Kieran,
1981). Some researchers have speculated that the immature, operational interpreta-
tion of the equal sign pervades students’ thinking throughout intermediate mathe-
matics, perhaps even up to the level of college calculus (e.g., Kieran, 1981).

We argue that the apparent discrepancies in middle-school students’ interpreta-
tions of the equal sign can be understood by considering the context in which the
equal sign has been presented in past work. In studies of middle-school students’
performance solving equations, the equal sign has been presented in the context of
an equation that has operations on both sides of the equation (e.g., 3 + 4 = 5 + 2 or 3
+ 4 + 5 = 3 + __). In contrast, studies in which students have been asked to define
the equal sign have presented the equal sign either alone (=), or in the context of an
addition problem (e.g., 3 + 4 = __). We suspect that this context difference across
studies is responsible for the observed discrepancies in middle-school students’ in-
terpretations of the equal sign. As suggested by prior work (e.g., Munakata et al.,
1997; Strohner, 1974), newly emerging ways of thinking about a concept may be
particularly sensitive to variations in context.

Barsalou’s (1982, 1993) work on concept construction provides a framework
for predicting how and when the context can influence thinking. Every concept has
a number of ideas, or knowledge chunks, associated with it, and the specific
chunks that are activated when the word denoting the concept is perceived can de-
pend on the context. When a chunk is only weakly associated with a concept, the
context determines whether the chunk is activated by the concept’s word. But
when a chunk is strongly associated with a concept, the context plays little role in
whether the idea is activated. For example, when individuals hear the word bird,
they may activate “has feathers” regardless of the context in which they hear the
word. This is because the chunk “has feathers” is strongly associated with birds.
Indeed, there are not many instances when individuals see a bird without feathers.
However, whether individuals activate “can be a pet” when they hear the word bird
may depend on the context in which the word is presented. This is because the
chunk “can be a pet” is only weakly associated with birds. All birds are not pets,
and actually, birds are more likely to be seen outdoors than as pets in cages. Thus,
if the word bird were presented in the context of discussing predatory animals in
the wild, it is unlikely that the idea “can be a pet” would be activated. In contrast, if
it were presented in the context of discussing dogs and cats, then it is quite likely
that “can be a pet” would be activated. Chunks such as “has feathers” are termed
context-independent, whereas chunks such as “can be a pet” are termed con-
text-dependent (Barsalou, 1982). The strength of activation of a chunk that is con-
text-dependent varies greatly depending on the context, whereas the strength of a
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context-independent chunk is relatively strong and highly resistant to contextual
manipulations. Moreover, according to Barsalou (1982), a particular chunk can be-
come context-independent after repeated pairings with the word.

We suggest that Barsalou’s (1982) work on concept construction provides a
useful framework for making predictions about the nature of cognitive change and
contextual variability in students’ interpretation of the equal sign. In the elemen-
tary school years, the equal sign is repeatedly paired with arithmetic operations
(see Seo & Ginsburg, 2003, for evidence on this point), so chunks such as “the to-
tal” and “the answer” should become strongly associated with the equal sign. Ac-
cordingly, the operational interpretation of the equal sign should be activated re-
gardless of the context in which the equal sign is presented.

As children progress through late elementary school and begin middle-school
mathematics, they experience the equal sign in the context of equivalent frac-
tions (e.g., 2/3 = __/6), “greater-than, less-than, or equal-to” problems (e.g., is 2
>, <, or = 3?), and pre-algebra problems (e.g., 2 × __ = 6). Thus, chunks such as
“the same amount as” and “equal to” should also become associated with the
equal sign. Early on, the association between the equal sign and these chunks
should be relatively weak compared to that between the equal sign and chunks
such as “the total” and “the answer”. Accordingly, the context should determine
whether chunks such as “the same amount as” and “equal to” are activated when
the equal sign is presented.

As students progress through advanced mathematics and science, they encoun-
ter problems that reinforce the association between the equal sign and chunks such
as “the same amount as” and “equal to”. Eventually, “the same amount as” and
“equal to” should become so strongly associated with the equal sign that the con-
text should play little role in whether they are activated.

This study tested this account of changes in students’ interpretations of the
equal sign. We investigated equal sign understanding in students with varying de-
grees of mathematics experience (elementary school students, seventh-grade stu-
dents, college undergraduate students who had taken calculus, and physics gradu-
ate students). We assessed students’ interpretations of the equal sign when
presented alone, =; in the context of a typical addition problem, 3 + 4 + 5 + 3 = __;
and in the context of an equivalence problem, 3 + 4 + 5 = 3 + __.

Based on our framework, we expected a Mathematics Experience Level ×
Equal Sign Context interaction. Specifically, elementary school students should
interpret the equal sign operationally regardless of context. Seventh-grade students
should interpret the equal sign as an operational symbol in the alone and addition
contexts, but as a relational symbol of equivalence in the equivalence context. Un-
dergraduate and graduate students should interpret the equal sign relationally re-
gardless of context. Thus, the seventh-grade students’ performance should drive
the predicted interaction.
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METHOD

Participants

Elementary School Students

Fifty-five elementary school students (31 girls, 24 boys; including 20 third
graders, 21 fourth graders, and 14 fifth graders) from a religious education pro-
gram participated. The students attended public elementary schools in a suburban
area of Wisconsin. None of the students had had algebra or pre-algebra instruction
in their math classes.

Seventh-Grade Students

Twenty-five seventh-grade students (14 girls, 11 boys) from a religious educa-
tion program participated. The students attended public middle schools in a subur-
ban area of Wisconsin. The students had been introduced to some pre-algebra in
their math classes.

Undergraduate Students

Thirty-five undergraduates (24 women, 11 men) from an introductory psychol-
ogy course at the University of Wisconsin–Madison participated. Students re-
ceived an extra-credit point for their participation. All students had taken at least
one calculus class in their lifetime.

Physics Graduate Students

Twelve physics graduate students (6 women, 6 men) affiliated with the Depart-
ment of Physics at the University of Wisconsin–Madison participated. All students
were beyond their 2nd year of graduate training and had passed the physics quali-
fying examination, which is an examination that determines retention in the Uni-
versity’s doctoral program in physics.

Procedure

Students participated in one experimental session in which they completed a
two-page questionnaire that was designed to assess their understanding of the
equal sign. The questionnaire was modeled after tasks that have been used in previ-
ous work to measure students’ conceptions of the equal sign (e.g., Rittle-Johnson
& Alibali, 1999; McNeil & Alibali, 2000). A female experimenter administered
the questionnaire. Participants were randomly assigned to one of three equal-sign
contexts. In the equal sign alone context, an equal sign, =, was presented alone at
the top of both pages of the questionnaire. In the typical addition context, an addi-
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tion problem, 4 + 8 + 5 + 4 = __, was presented at the top of both pages. In the
equivalence context, an equivalence problem, 4 + 8 + 5 = 4 + __, was presented at
the top of both pages.

The first page of the questionnaire was designed to elicit participants’own defi-
nitions of the equal sign. Figure 1 illustrates the equal-sign context manipulation as
it was presented on the first page of the questionnaire. Once participants turned to
the first page, the experimenter directed the students as follows: “The first question
says, ‘Tell me what this math symbol means.’ There is an arrow on your paper that
is pointing to a math symbol, and I want you to tell me what you think that math
symbol means. Now, I don’t want you to tell me the name of the math symbol. I
want you to tell me what you think it means. You can just write your answer under
the question on the black lines.” After participants completed the first page, the ex-
perimenter instructed them to turn to the second page.

The second page was designed to evoke participants’ opinions about a number
of possible definitions of the equal sign. At the top of the page, the equal sign was
presented in the same context used on page 1. Participants were asked to rate the
smartness of six fictitious students’definitions of the equal sign as very smart, kind
of smart, or not so smart. The experimenter directed participants as follows:
“Some other students told me what they thought that math symbol means. I’m go-
ing to tell you what they said, and I want you to circle whether you think it is very
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smart, kind of smart, or not so smart. The first student said that it means the answer
to the problem. Circle whether you think that is very smart, kind of smart, or not so
smart. The second student said that it means the end of the problem. The third stu-
dent said that it means that two amounts are the same. The fourth student said that
it means to repeat the numbers. The fifth student said that it means that something
is equal to another thing. The last student said that it means the total.” After partic-
ipants completed the second page, the questionnaires were collected. The elemen-
tary school and seventh-grade students were given a brightly colored pen for par-
ticipating, and the undergraduates were given one extra credit point.

The physics graduate students completed the two-page questionnaire via elec-
tronic mail. Participants were sent the first page of the questionnaire and after they
finished and returned the first page, the second page was sent. Instructions for
completing the questionnaire were written in the correspondence and were identi-
cal to the instructions given to the other experience groups.

Coding Equal-Sign Definitions

Participants’ definitions of the equal sign were coded for whether they ex-
pressed the operational view of the equal sign (e.g., “the answer,” “the total,” “add
up all the numbers”), the relational view of the equal sign (e.g., “two amounts are
the same,” “equivalent to”), or an “unspecified equal” view of the equal sign (e.g.,
“equal,” “equals”). Each of the definitions provided by participants in our sample
fit into one of the three categories. Examples of participants’ definitions are pre-
sented in Table 1.

Coding Ratings

Participants’ ratings of each fictitious student’s definitions of the equal sign
were assigned 1 point (not so smart), 2 points (kind of smart), or 3 points (very
smart). Students’ rating of relational definitions was calculated by summing the
ratings for the definitions two amounts are the same and something is equal to an-
other thing. Students’ rating of operational definitions was calculated by summing
the ratings for the definitions the answer to the problem and the total. Students’ rat-
ing of distracter definitions was calculated by summing the ratings for the defini-
tions the end of the problem and repeat the numbers.

Reliability of Coding Procedures

Reliability for coding equal-sign definitions was established by having a sec-
ond coder evaluate the definitions of a randomly selected subsample of approxi-
mately 20% of each group (12 elementary students, 5 seventh-grade students, 7
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undergraduates, and 3 physics graduate students). Agreement between coders
was 100%.

RESULTS

We predicted an interaction of math experience level and equal-sign context.
Specifically, we hypothesized that (a) elementary students would interpret the
equal sign operationally regardless of context, (b) seventh-grade students would
maintain the operational interpretation in the alone and addition contexts but in-
terpret the equal sign relationally in the equivalence context, and (c) undergradu-
ates and graduate students would interpret the equal sign relationally regardless
of context. Because many investigators have found gender differences in mathe-
matics performance (see Hyde, Fennema, & Lamon, 1990, for a meta-analysis),
gender was included in all analyses. The main analysis focused on students’ own
definitions of the equal sign, and a secondary analysis focused on students’
smartness ratings of possible definitions of the equal sign. Alpha was set at .05
for all statistical tests.
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TABLE 1
Example Equal Sign Definitions

Group Definition

Elementary
Alone “I think it means equals.” a

Addition “It means that the answer is the next thing.” b

Equivalence “It means what all the numbers together are.” b

Seventh grade
Alone “When you add, subtract, multiply, or divide, you put this number before

your answer.” b

Addition “The answer to the question. What all the numbers add up to.” b

Equivalence “The right and the left are the same.” c

Undergraduate
Alone “The stuff on the right has the same value as the stuff on the left.” c

Addition “Means that it is equal to or equivalent to.” c

Equivalence “The numbers on the left equal the numbers on the right.” c

Graduate
Alone “Symbol that compares between quantities/expressions and indicates that

they are (or are set to be) equivalent and interchangeable.” c

Addition “The sign symbolizes that the numeric value on the left-hand side is the
same as the numeric value on the right-hand side.” c

Equivalence “It typically represents the concept of equality. For example, = can be
spoken in English as ‘is equivalent to.’” c

aUnspecified equal. bOperational. cRelational.



Students’ Own Definitions

We used multinomial logistic regression to predict the log of the odds of giving op-
erational (e.g., add up all the numbers), unspecified equal (e.g., equals), or rela-
tional (e.g., equivalent to) definitions. The predictor variables included math expe-
rience level (E), equal-sign context (C), and gender (G). The most conservative and
easily interpreted way of coding experience level is categorically. Thus, experi-
ence level was treated categorically, using three dummy variables to represent its
four levels (elementary, seventh grade, undergraduate, and graduate). However,
the conclusions were unchanged if experience level was coded using average grade
level (4, 7, 14, 18) or years of algebra experience (0, 0.5, 7, 11) as a continuous pre-
dictor variable. The graduate student level was used as the reference level.
Equal-sign context was treated as a categorical predictor variable, using two
dummy variables to represent its three levels (alone, addition, equivalence). The
alone context was used as the reference context. Gender was also treated as a cate-
gorical predictor variable.

We predicted an interaction of math experience level and equal-sign context.
Thus, our hypothesized model included independent effects of math experience
level, equal-sign context, and gender, as well as an interaction of math experience
level and equal-sign context, that is, E + C + G + E × C. The hypothesized model
provided an adequate fit to the data, likelihood-ratio goodness-of-fit statistic =
18.87, df = 22, p = .65. The hypothesized model was compared to other models us-
ing the Likelihood Ratio Test and the Akaike Information Criterion (AIC). The
Likelihood Ratio Test compares the –2 log-likelihood of a given model (M1) to the
–2 log-likelihood of a reduced model (M0) that drops a predictor variable(s) of in-
terest. The difference between the two –2 log-likelihoods, G2 (M0 | M1), approxi-
mates a chi-square distribution with degrees of freedom equal to the difference be-
tween the number of parameters in the two models. If G2 (M0 | M1) is larger than the
critical chi-square value, it can be concluded that the log of the odds of falling into
one of the three response categories depends on the variable(s) dropped in M0, and
thus, the variable(s) should not be dropped. As shown in Table 2, the log of the
odds of giving operational, unspecified equal, or relational definitions of the equal
sign were dependent on the interaction of experience level and equal sign context.
Thus, the interaction term should not be dropped from the model.

The AIC (Akaike, 1974) was used to ascertain which models were the best mod-
els. Essentially, the AIC is a weighted composite of the maximized log-likelihood
value for the model and the number of parameters in the model (–2 log-likelihood + 2
[number of parameters]). Models with the smallest AIC are considered optimal. The
AIC provides an approximate guide for selecting a model, and small differences in
AICshouldnotbeoverinterpreted.AgoodmodelmusthavenotonlyasmallAICbut
also a nonsignificant G2 (M0 | M1) relative to other potential models, indicating that
the log of the odds of falling into one of the response categories is independent of any
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variablesdropped toachieve themodel.AsshowninTable2,both theadditivemodel
(E + C + G) and the hypothesized model (E + C + G + E × C) had small AIC values
compared to other models. Because the hypothesized model also had a
nonsignificant G2 (M0 | M1) when compared to more inclusive models, it can be con-
cluded that the hypothesized model was an optimal model.

The Likelihood Ratio Test presented in Table 2 in which M1 was E + C + G + E ×
C (number 2) and M0 was E + C + G (number 1) indicates that the log of the odds of
giving each of the three types of equal-sign definition were dependent on the inter-
action of mathematics experience level and equal-sign context, G2 (1 | 2) = 22.85,
df = 12. Additional evidence for the E × C interaction comes from the Likelihood
Ratio Test in which M1 was the model containing all possible two-way interactions
(number 6) and M0 was the model containing all two-way interactions except E × C
(number 3), G2 (3 | 6) = 23.97, df = 12. Thus, the log of the odds of giving opera-
tional, unspecified equal, or relational definitions of the equal sign were dependent
on the interaction of experience level and equal-sign context. Figure 2 displays the
proportion of students at each experience level and equal-sign context in the sam-
ple who gave each type of definition. Note the striking effect of context on the defi-
nitions given by seventh-grade students.

To examine whether seventh-grade students were more likely to give relational
definitions of the equal sign in the equivalence context than in the alone and addi-
tion contexts, we constructed 95% confidence intervals (CIs) for the odds ratios
comparing the odds of giving relational definitions in the equivalence context to
the odds of giving relational definitions in each of the other two contexts. Because
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TABLE 2
Comparison of Several Models for Estimating the Log of the Odds

of Giving an Operational, Unspecified Equal, or Relational Definition
of the Equal Sign.

Number Model –2logL # par G2 (M0 | M1) AIC

1 E + C + G 82.67 14 G2 (1 | 2) = 22.85a 110.67
G2 (2 | 6) = 3.48

2 E + C + G + E × C (hypothesized model) 59.82 26 G2 (2 | 5) = 3.53 111.82
G2 (2 | 4) = 4.98

3 E + C + G + E × G + C × G 75.31 24 G2 (3 | 6) = 23.97a 123.31
4 E + C + G + E × C + C × G 54.84 30 G2 (4 | 6) = 3.50 114.84
5 E + C + G + E × C + E × G 56.39 32 G2 (5 | 6) = 5.05 120.39
6 E + C + G + E × C + E × G + C × G 51.34 36 G2 (6 | 7) = 10.39 123.34
7 E + C + G + E × C + E × G + C × G

+ E × C × G
40.95 48 — 136.95

Note. Predictor variables include math experience level (E), equal sign context (C), and gender (G).
a Indicates significance; the variable dropped in the model matters and should not be dropped. Thus,

dropping the E × C term matters significantly.



the comparisons involve cell counts that are very small or 0, amended estimators of
the odds ratios and asymptotic standard errors were used in which 0.5 was added to
each cell count (see Agresti, 1996, p. 25). The odds that seventh-grade students
gave relational definitions of the equal sign were 40 times greater in the equiva-
lence context than in the alone context, 95% CI = (4.79, 334.32). The odds that sev-
enth-grade students gave relational definitions of the equal sign were 18 times
greater in the equivalence context than in the addition context, 95% CI = (2.06,
157.33). Thus, it can be concluded that the true odds of seventh-grade students giv-
ing relational definitions of the equal sign were greater in the equivalence context
than in either of the other two contexts.

Likelihood Ratio Tests were also used to examine the independent effects of ex-
perience level, equal-sign context, and gender. The Likelihood Ratio Test in which
M1 was E + C + G and M0 was C + G tested the effect of experience level, control-
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FIGURE 2 Proportion of elementary school students (top left panel), seventh-grade students
(top right panel), undergraduates (bottom left panel), and physics graduate students (bottom
right panel) in each equal-sign context condition who gave an operational, unspecified equal,
and relational definition of the equal sign.



ling for equal-sign context and gender. Not surprisingly, the log of the odds of giv-
ing operational, unspecified equal, or relational definitions of the equal sign were
dependent on experience level, G2 (M0 | M1) = 78.52, df = 6. As seen in Figure 2,
students with less experience were more likely to give operational definitions, and
students with more experience were more likely to give relational definitions.

The Likelihood Ratio Test in which M1 was E + C + G and M0 was E + G
tested the effect of equal-sign context, controlling for experience level and gen-
der. The log of the odds of giving operational, unspecified equal, or relational
definitions of the equal sign were not dependent on equal-sign context, G2 (M0 |
M1) = 7.06, df = 4.

The Likelihood Ratio Test in which M1 was E + C + G and M0 was E + C tested
the effect of gender, controlling for experience level and equal-sign context. The
log of the odds of giving operational, unspecified equal, or relational definitions of
the equal sign were related to gender, but the effect was marginal, G2 (M0 | M1) =
5.06, df = 2, .05 < p < .10. Of the 75 female participants, 35 (47%) gave operational
definitions, 9 (12%) gave unspecified equal definitions, and 31 (41%) gave rela-
tional definitions. Of the 52 male participants, 20 (38.5%) gave operational defini-
tions, 13 (25%) gave unspecified equal definitions, and 19 (36.5%) gave relational
definitions. Thus, the differences appears to be in the probability that male partici-
pants were more likely than female participants to give unspecified equal defini-
tions of the equal sign. The odds that male participants gave unspecified equal defi-
nitions were 2.44 times the odds that female participants gave unspecified equal
definitions, 90% CI = (1.32, 4.53). The effect is marginal, so it should be inter-
preted with caution.

Students’ Ratings of Alternative Definitions

We next analyzed students’ smartness ratings for operational definitions (the total,
the answer), distracter definitions (repeat the numbers, the end of the problem),
and relational definitions (equivalent to, the same amount as). For each definition
type, students’ smartness ratings could range from 2 (not so smart) to 6 (very
smart). Because each participant rated all three types of definitions, the predicted
interaction was a three-way interaction of experience level, equal-sign context, and
definition type. A 4 (math experience level) × 3 (equal-sign context) × 2 (gender) ×
3 (definition type) analysis of variance was performed, with repeated measures on
definition type. Mauchly’s Test of Sphericity on the variance-covariance matrix in-
dicated that sphericity could not be assumed, approximate χ2 (df = 2) = 8.4. Conse-
quently, for all tests of within-subjects effects, we multiplied the numerator and de-
nominator degrees of freedom by the relevant Greenhouse–Geisser estimate of
epsilon, and for all follow-up comparisons we did not assume homogeneity of
variance and used a separate error term for each effect under consideration.
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Four effects were significant, and we discuss them in the following order: (a)
the predicted three-way interaction of definition type, experience level, and con-
text, F(11.12, 190.91) = 1.87; (b) the two-way interaction of definition type and
context, F(3.71, 190.91) = 6.55; (c) the three-way interaction of definition type,
experience level, and gender, F(5.56, 190.91) = 2.33; and (d) the main effect of
definition type, F(1.85, 190.91) = 89.76.

The significant three-way interaction of definition type, experience level, and
context is presented in Figure 3. Results support the conclusions of the previous
analysis. Seventh-grade students displayed a different pattern of results than did
students at the other three experience levels, particularly with respect to the com-
parisons between the equivalence and alone contexts. Seventh-grade students’ rat-
ings of operational definitions were lower in the equivalence context than in the
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FIGURE 3 Mean smartness rating scores given to operational definitions, distracter defini-
tions, and relational definitions by elementary school students (top left panel), seventh-grade
students (top right panel), undergraduates (bottom left panel), and physics graduate students
(bottom right panel) in each equal-sign context condition. Error bars indicate standard error es-
timated separately for each group (i.e., not assuming homogeneity of variance).



alone context, F(1, 22) = 4.78, and their ratings of relational definitions were
higher in the equivalence context than in the alone context, F(1, 22) = 8.45.

As can be seen in Figure 3, one of the main differences contributing to the sig-
nificant three-way interaction was the differential effect of context on sev-
enth-grade students’ versus other students’ ratings of relational definitions.
Whereas the seventh-grade students’ ratings of relational definitions differed dra-
matically between the equivalence context (M = 5.31, SD = 1.28) and the alone
context (M = 3.78, SD = 1.09), the relational ratings of students in the other experi-
ence levels were comparable in the equivalence (M = 4.29, SD = 1.20) and the
alone contexts (M = 4.62, SD = 1.28). The complex partial interaction comparing
the relational ratings of seventh-grade students to those of other students in the
equivalence versus the alone context was significant, F(1, 82) = 7.82.

The significant two-way interaction of definition type and equal-sign context
can be inferred from Figure 3 by averaging across math experience level. Col-
lapsing across experience level, the effect of context differed across definition
types, F(3.15, 195.51) = 6.40. Overall, context had a significant effect on partici-
pants’ ratings of relational definitions, F(2, 126) = 5.49, and operational defini-
tions, F(2, 126) = 7.56, but not on their ratings of distracter definitions, F(2, 126) =
0.89. For relational definitions, participants’ ratings were lower in the addition
context than in the alone context, F(1, 124) = 10.21, and ratings were comparable
in the equivalence and alone contexts, F(1, 124) = 0.020. For operational defini-
tions, participants’ ratings were lower in the equivalence context than in the alone
context, F(1, 124) = 4.19, and they were marginally higher in the addition context
than in the alone context, F(1, 124) = 3.40, .05 < p < .10. Thus, collapsing across
experience level, context influenced students’ ratings of operational and relational
definitions in expected ways but it did not influence students’ ratings of distracter
definitions.

Figure 4 presents the three-way interaction of definition type, experience level,
and gender. Among elementary students, seventh-grade students, and undergradu-
ate students, male and female participants had comparable patterns of ratings across
the three definition types: elementary, F(1.74, 92.23) = 1.17; seventh-grade, F(1.25,
28.84) = 0.49; undergraduate, F(1.85, 61.01) = 0.45. However, for graduate stu-
dents, men and women displayed different patterns of ratings across definition
types, F(1.93, 19.29) = 5.24. Graduate women rated operational definitions about
the same as graduate men, F(1, 10) = 0.45; relational definitions marginally higher,
F(1, 10) = 4.62, .05 < p < .10; and distracter definitions lower, F(1, 10) = 7.27.

Thus, the main difference contributing to the significant three-way interaction
of definition type, math experience level, and gender was the differential effect of
gender on graduate students’versus other students’ ratings. The complex partial in-
teraction comparing the effect of gender on the pattern of ratings of graduate stu-
dents to the effect of gender on the pattern of ratings of other students was signifi-
cant, F(1.51, 185.98) = 3.08.
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Finally, the main effect of definition type indicated that overall, students’ rat-
ings differed across the three definition types. Students’ ratings of distracter defini-
tions (M = 2.67, SD = 0.83) were lower than their ratings of operational definitions
(M = 3.99, SD = 1.18), F(1, 126) = 125.14, and lower than their ratings of relational
definitions (M = 4.20, SD = 1.32), F(1, 126) = 119.35. Thus, overall, students
viewed distracter definitions as not very smart compared to both operational and
relational definitions.

Taken together, results from both analyses support the hypothesis that sev-
enth-grade students’ interpretation of the equal sign is highly dependent on con-
text. Seventh-grade students interpreted the equal sign operationally in the alone
and addition contexts but relationally in the equivalence context. Across all three
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FIGURE 4 Mean smartness rating scores given to operational definitions, distracter defini-
tions, and relational definitions by elementary school girls and boys (top left panel), sev-
enth-grade girls and boys (top right panel), undergraduate women and men (bottom left panel),
and physics graduate student women and men (bottom right panel). Error bars indicate standard
error estimated separately for each group (i.e., not assuming homogeneity of variance).



contexts, elementary students maintained an operational interpretation and under-
graduates and graduate students maintained a relational interpretation.

DISCUSSION

In this study, students’ own definitions of the equal sign, as well as their ratings of
alternative definitions, provided evidence that the context influences students’ in-
terpretations of the equal sign. Most notably, the context influenced the interpreta-
tions of seventh-grade students, for whom the relational interpretation is just start-
ing to emerge. As expected, elementary school students defined the equal sign as
the answer or the total regardless of context. Seventh-grade students interpreted
the equal sign as the answer or the total in the alone and addition contexts but inter-
preted it as a relational symbol of equivalence in the context of an equivalence
problem. The undergraduate and graduate students interpreted the equal sign as a
relational symbol of equivalence in all contexts, providing evidence that with
enough experience, the relational interpretation can supersede the operational in-
terpretation.

The study highlights that scientists and educators need to be cautious when
making conclusions about what people know. A widely held belief is that people
either have or lack knowledge of a particular concept. Yet, what can be said about
seventh-grade students’ knowledge of the equal sign as a relational symbol of
equivalence? Clearly, their knowledge is not comparable to that of physics gradu-
ate students, nor is it comparable to that of elementary school students. When the
equal sign was presented alone or in the context of an addition problem, sev-
enth-grade students resembled the elementary school students and appeared to
lack knowledge of the equal sign as a relational symbol. However, when the equal
sign was presented in the context of an equivalence problem, seventh-grade stu-
dents resembled the more experienced students and appeared to have knowledge of
the equal sign as a relational symbol. Thus, any conclusions about the path of
knowledge change in students’ interpretation of the equal sign depend on the con-
text in which the knowledge is elicited.

The performance of seventh-grade students suggests that students do not aban-
don well-established interpretations just because they do not work in a few con-
texts. Instead, they may view those contexts as exceptions and change their think-
ing only in those contexts. In middle school, students begin to encounter evidence
that contradicts their operational interpretation of the equal sign on a regular basis
(e.g., equivalent fractions, pre-algebra problems). At this point, one of three possi-
bilities could occur. First, students could seal themselves off from change com-
pletely and continue to maintain their operational interpretation. This possibility is
not supported by the data, given that undergraduates and physics graduate students
interpreted the equal sign as a relational symbol of equivalence in all contexts. Sec-
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ond, contradictory evidence could provide the impetus for full-scale knowledge re-
organization and change. In this case, students’ experience with contradictory evi-
dence would lead them to develop a new understanding of the equal sign, thus
causing them to shift abruptly from the operational interpretation to the relational
interpretation. This possibility also is not supported by the data, given that sev-
enth-grade students maintained the operational interpretation in the alone and ad-
dition contexts. Third, students may change their interpretation on a con-
text-by-context basis. That is, contradictory evidence may require only that an
exception be made in a particular context, rather than spurring a complete reorga-
nization of knowledge. In this case, students would hold on to their original con-
ception of the equal sign in most contexts, while also interpreting the equal sign as
a relational symbol of equivalence in contexts that elicit ideas such as equivalent to
and same amount as. The results of this study support this possibility (see also Seo
& Ginsburg, 2003).

The process of making an exception in some contexts, while generally main-
taining a different view, has received attention in the prejudice literature (Allport,
1954). Consider an individual who has a negative conception of a particular ethnic
group. It is likely that this individual will, at some point, encounter a person from
that ethnic group who does not fit the individual’s preconception. As the evidence
stacks up, it may become so overwhelming that the individual is forced to concede
and acknowledge the person as an exception. However, even though the exception
is acknowledged, the prejudiced individual will likely hold on to the negative con-
ception of the group as a whole (Allport, 1954). Thus, people sometimes maintain
their existing ways of thinking in the face of conflicting environmental input by
treating conflicting input as an exception.

If a newly acknowledged exception better accounts for environmental input in a
particular context, it will be activated to interpret the input. The exception may be
activated in more and more contexts over time and, in this way, may eventually su-
persede the original concept. Although the original way of thinking is never
erased, it may eventually become obsolete, particularly if the exception gets acti-
vated more frequently (Siegler, 1999).

In support of this account, the physics graduate students’ relational interpreta-
tion of the equal sign was relatively immune to context effects. This is not surpris-
ing given the nature of the students’ extensive experience with the equal sign. As
Barsalou (1982) suggested, a particular idea about a concept can become context
independent when the idea is repeatedly paired with the concept. For physics grad-
uate students, the bulk of their experience with the equal sign involves problems in
which it is essential to interpret the equal sign as a symbol of equivalence. From
equations such as “distance = rate × time” that are studied early on in physics train-
ing to the computer programming assignment statements such as “int x = 10” that
graduate students work with on a day-to-day basis, the idea that the equal sign ex-
presses an equivalence relationship is encountered by physicists constantly. After

302 MCNEIL AND ALIBALI



experiencing repeated pairings of the equal sign and the equivalence idea, the
physics graduate students develop a firm grasp of the equal sign as a relational
symbol and they are able to recognize the relational nature of the equal sign no
matter what the context.

This study adds to a growing body of work that addresses gender differences in
mathematical abilities. Prior work has suggested that males may have a slight advan-
tage in some areas of mathematics (see Hyde, Fennema, & Lamon, 1990, for a
meta-analysis). In this study,gendereffectswereminoranddidnot revealanobvious
advantage for either gender. In the analysis of students’own definitions, male partic-
ipants were more likely than female participants to give unspecified equal defini-
tions of the equal sign. Unspecified equal definitions are less specific than other pos-
sible definitions; however, it would be difficult to argue that this implies either an
advantage or disadvantage for males, given that students were not directed to be as
specific as possible. In students’ ratings of alternative definitions, male and female
students were comparable at all experience levels, except the graduate level. Gradu-
ate student men tended to give distracter definitions higher smartness ratings than
did graduate student women. This finding corresponds to prior work that has sug-
gested that gender differences in mathematics are greatest in high-ability samples
(Benbow, 1988; Casey, Nuttall, & Pezaris, 1997). However, in this case, giving
higher smartness ratings to distracter definitions does not necessarily constitute ei-
ther an advantage or a disadvantage for males. Thus, this study did not reveal any no-
table differences between genders in their knowledge of the equal sign.

Our study replicates previous work showing that elementary school students in-
terpret the equal sign as “the answer” or “the total” (Baroody & Ginsburg, 1983;
Behr et al., 1980; Kieran, 1981). Young students often encounter the equal sign in
the context of addition problems, which may be particularly encouraging of the op-
erational interpretation. Consider a problem such as 3 + 4 + 5 + 6 = __. To solve the
problem correctly, children need not interpret the equal sign as a relational symbol
of equivalence but rather need only have a strategy for operating on the numbers to
get a final answer. This is true not only of typical addition problems but also of
most other mathematics problems encountered by elementary school students.
Thus, when presented with a mathematics problem, young students may concern
themselves with the operations involved in getting the correct solution, and they
may come to associate the equal sign with those operations.

If the context consistently reinforces students’ arithmetic thinking, as it does
year after year in American mathematics classrooms (Valverde & Schmidt, 1997),
then students have the potential to become entrenched in the interpretation of the
equal sign as the answer or the total. The ramifications for elementary school stu-
dents may not be obvious because students who interpret the equal sign as the an-
swer or the total can perform well in arithmetic, which dominates elementary
school mathematics. Indeed, American fourth-grade students have been shown to
perform above the international average in mathematics (Mullis et al., 1997).
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Although effects may not be immediately apparent, if students hold an en-
trenched, operational interpretation of the equal sign, this may make the transi-
tion to algebra, where the relational meaning of the equal sign is key, particu-
larly difficult (Herscovics & Linchevski, 1994). To truly understand algebraic
equations such as 2x + 4 = 18, students must view the equal sign as a relational
symbol of equivalence. Thus, students who are entrenched in an operational in-
terpretation may be at a disadvantage. Consistent with this view, elementary
school students who are most entrenched in an operational interpretation of the
equal sign are the least likely to benefit from a brief intervention that provides
new ways of thinking about equivalence problems (McNeil & Alibali, in press).
Thus, although detrimental effects of the operational interpretation of the equal
sign may not be apparent in elementary school, they may become marked once
students reach algebra. This may be one factor contributing to the below-average
performance of American students in international comparisons once they reach
eighth grade (Beaton et al., 1996).

Given the central role of context in eliciting newly emerging knowledge, it may
be worthwhile for teachers to present the equal sign in a variety of contexts, espe-
cially ones that dissuade the operational interpretation, beginning early in mathe-
matics instruction. Additional research is needed to ascertain which combination
of contexts would be optimal. Recent work by Seo and Ginsburg (2003) suggests
that some methods of exposing elementary school students to different contexts
may not be sufficient on their own to foster a relational interpretation in every con-
text. Second-grade students, who were exposed to the equal sign in a variety of
contexts in their mathematics class, were tested on their understanding of the equal
sign. In class, students had seen the equal sign in a variety of arithmetic contexts
(e.g., 2 + 3 = 5) and nonarithmetic contexts (e.g., 1 dollar = 100 pennies). However,
they had not seen it in nontraditional arithmetic contexts (e.g., 5 = 3 + 2). When
students were tested on their understanding of the equal sign in a variety of con-
texts, they exhibited a relational interpretation of the equal sign only in the
nonarithmetic contexts. They maintained the operational view when the equal sign
was presented alone and in contexts involving an arithmetic operation, including
nontraditional ones such as 5 = 2 + 3. In contrast, work by Carpenter and col-
leagues (Carpenter, Franke, & Levi, 2003; Carpenter & Levi, 2000) suggests that
even first- and second-grade students have the potential to learn the relational in-
terpretation of the equal sign in arithmetic contexts.

Studies of students’ interpretation of the equal sign not only inform mathemat-
ics instruction but also contribute to our understanding of cognitive processes more
broadly. Research in cognitive development seeks to characterize the knowledge
that underlies behavior and to describe the path of knowledge change over time.
This study underscores that an individual may appear to have knowledge of a par-
ticular concept in one context but not in another. Further, these results highlight
that variations across contexts may be particularly important for revealing the na-
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ture of newly emerging knowledge. Thus, contextual variation is an important
source of information both about how knowledge changes as a function of experi-
ence, and about how new knowledge is integrated with old.
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