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Abstract 

A growing body of research suggests that the use of concrete materials is not a sure-fire strategy 

for helping children succeed in the classroom. Instead, concrete materials can help or hinder 

learning, depending on a number of different factors. Taken together, the articles in this issue 

highlight the complexities involved in using concrete materials in the classroom and warn 

educators and researchers that learning from concrete materials can be derailed in a number of 

ways, such as: (a) choosing the wrong types of materials, (b) structuring the environment in ways 

that do not support learning from concrete materials, and (c) failing to connect concrete 

representations to abstract representations. We discuss each of these problems and offer some 

potential solutions. 
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Using Concreteness in Education: Real Problems, Potential Solutions 

  

 Many educators argue that concrete materials help students “think, reason, and solve 

problems” (Burns, 1996, p. 48). However, this unconditional endorsement includes a set of 

implicit assumptions about the concrete materials themselves, the context surrounding the use of 

concrete materials, and of the type of instruction (if any) that is necessary for students to learn 

from using concrete materials. The articles in this issue offer a first step toward decomposing 

some of the assumptions surrounding the use of concrete materials in instruction. 

 A growing body of evidence suggests that the use of concrete materials alone does not 

guarantee successful acquisition of mathematical concepts. While concrete materials may offer a 

boost on a direct test of the knowledge (Johnson, 2000; Raphael & Wahlstrom, 1989; Sowell, 

1989), transfer is difficult, whether it is transfer to a new testing format (Resnick & Omanson, 

1987; Thompson & Thompson, 1990) or to a structurally similar, but superficially different 

domain (Goswami, 1991; Novick, 1988). The articles in this issue shed light on these 

complexities and warn educators and researchers that learning from concrete materials can be 

derailed in a number of ways, such as: (a) choosing the wrong types of materials, (b) structuring 

the environment in ways that do not support learning from concrete materials, and (c) failing to 

connect concrete representations to abstract representations. We discuss each of these problems 

in turn and consider possible solutions. 

Choosing concrete materials 

The choice between one set of materials and another is not merely a theoretical exercise, 

it is a real decision that teachers face each day. When preparing lessons on counting, preschool 

educators might have to choose between counters that look like apples and counters that look 

like black disks. Similarly, when planning lessons on fractions, fourth-grade teachers might have 

to choose between fraction pies designed to look like pizzas and fraction tiles that are uniform in 

color. Intuition suggests that educators should choose the apples and the pizzas because they 

capture children’s attention and ground abstract mathematical concepts in the real world. 
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However, the articles in this issue raise some concerns about the usefulness of such concrete 

materials. The authors converge on the idea that realistic concrete materials can hinder learning 

of abstract concepts in some cases. They differ, however, in their explanation of the processes 

underlying the phenomenon. 

Kaminski, Sloutsky, and Heckler (this issue) suggest that realistic concrete materials 

convey superficial information that interferes with learning. For example, a child counting apples 

may be distracted by the shape or color of the apples and, as a result, may be less likely to focus 

on how many apples are present. In this case, the concrete instantiation (apple) is irrelevant and 

distracts learners from the information that educators intend to share (number). Physical 

manipulatives, in particular, can be distracting because they often have properties that are 

irrelevant to the target concept (Sarama & Clements, this issue). 

Kaminski et al. (this issue) further argue that concrete materials can be detrimental to 

learning even when superficial features are relevant to the target concept because superficial 

features compete with relational structure, thereby reducing the likelihood that the appropriate 

analogical processes will occur. For example, although sliced pizzas have the potential to convey 

relevant information about fractions, pizzas also have other features (e.g., they are purchasable) 

that compete with that information. As a result, students may make an analogy to other math 

problems that share superficial features (e.g., word problems involving the buying and selling of 

goods), rather than to other math problems that share relational structure (e.g., problems 

involving fraction tiles). 

Uttal, O’Doherty, Newland, Hand, and DeLoache (this issue) offer a related explanation. 

They suggest that realistic concrete materials hinder learning because children must grapple with 

dual representation: an apple counter is both an object, and a representation of an abstract 

quantity. According to this view, realistic concrete materials hinder learning because they have 

features that draw children’s attention to the objects themselves, rather than to the abstract 

concepts being represented. In dual representation, the individual features of the concrete objects 

hinder learning only to the extent that they pull attention toward the objects. This differs from 



                   Using Concreteness in Education     5 

Kaminski et al.’s (this issue) account, in which the distracting or misaligned object features 

themselves hinder learning.        

Martin (this issue) provides an entirely different theoretical framework for understanding 

why realistic concrete materials may hinder learning. That is, realistic concrete materials may 

sometimes do too much of the work for learners. In order for Physically Distributed Learning 

(PDL) to occur, learners need to interact with the environment in ways that allow them to 

construct stable, generalizable concepts for themselves. If a given set of materials provides 

children with a correct interpretation from the start, children may not engage in the active 

process of adapting to and reinterpreting the environment, and learning will be shallow. For 

example, in a lesson on fractions, pizzas may be interpreted automatically as wholes that are 

divided into parts, so unlike fraction tiles, they may not offer children the opportunity to 

construct that knowledge through the co-evolution of mind and world (cf. Martin & Schwartz, 

2005). 

When choosing concrete materials for classroom use, the research and theory presented 

here suggest that simple, bland materials (e.g., solid colored fraction tiles, black disk counters) 

may assist students’ focus on deeper mathematical structures better than will “realistic” materials 

(e.g., pizza fraction tiles, fruit shaped counters). Furthermore, bland materials may allow students 

the flexibility to assign new meanings to the materials as their concepts change. Materials that 

are designed in the image of real-world objects can be downright distracting to students and can 

draw their attention to superficial characteristics or irrelevant associations. For this reason, such 

materials may be especially problematic for students who have attention difficulties, such as 

those diagnosed with Attention Deficit Hyperactivity Disorder (ADD/ADHD). If realistic 

concrete materials are all that is available in a particular classroom, then the educator may need 

to provide students with supplementary instruction on how to think about the materials and how 

to decide which information is relevant versus irrelevant, as educators and tutors often do with 

math story problems (Fuchs, 2008).  

Structuring the Learning Environment 
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Even with the best-designed concrete materials in hand, educators must define the 

learning environment so that the materials can be used in ways that have a positive instructional 

impact. The articles in this issue suggest that educators need to find an appropriate balance 

between structure and spontaneity. Without appropriate structure, learners may fail to discover 

the target concept. With too much structure, learners may become dependent on the external 

environment at the expense of constructing meaningful knowledge for themselves. We consider 

each of these in turn. 

 When the structure of the learning environment does not help children find the 

underlying concepts or processes, the use of concrete materials is ineffective at best. Without 

structure to guide students’ actions with the objects, students may interact with the objects in 

ways that differ from the actions that support the target concept. For example, consider the 

experimental condition described by Uttal et al. (this issue) in which children were allowed to 

play with a scale model before being asked to use it symbolically. This condition was designed 

to simulate what children typically do with concrete objects in an unstructured environment with 

no guidance from an educator or parent. The result was negative. Playing with the scale model 

actually harmed children’s ability to use it symbolically. Thus, manipulative-based learning in 

unstructured environments may not help children construct knowledge that transfers to other 

symbol systems and methods of assessment. In this regard, Sarama and Clements (this issue) 

argue that a major weakness of concrete physical manipulatives is that they can be acted upon in 

ways that are meaningful to the students, but that are not meaningful in the realm of 

mathematics. Virtual manipulatives offer a potential solution because there is a limited set of 

possible actions that can be performed on them (Sarama & Clements). 

 The work of Glenberg and colleagues (e.g., Brown & Glenberg, 2007; Glenberg, Brown, 

& Levin, 2007; Glenberg, Jaworski, Rischal, & Levin, 2007) supports the hypothesis that 

physical manipulatives can be effective when they are used in structured environments. The idea 

is to ground the abstract symbols (e.g., words) in an appropriately structured environment so that 

the children can use the environment to help guide their thinking.  For example, the child may 
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read a story problem about a zookeeper feeding various amounts of food to various animals, and 

the child must calculate the total amount of food eaten. While reading, the child manipulates a 

zookeeper, the items of food, and the animals within a toy environment. To the extent that the 

physical structure created by the child’s manipulations (e.g., piles of food that can be added 

together) is analogous to the underlying mathematics of the situation, this procedure helps the 

child solve the problem. In addition, this physical manipulation easily transfers to imagined 

manipulation when the toys are removed. This work illustrates the benefits working with 

manipulatives in structured environments. Nonetheless, because children will not always create 

situations that are analogous to the underlying mathematics, they may need explicit instruction in 

the optimal use of manipulatives. 

Although learning environments need to have some structure, Martin (this issue) warns 

that too much structure can be constraining. Without freedom to explore, students may not learn 

as much or as efficiently as they are able. Physically Distributed Learning (PDL) occurs when 

the child’s actions on the environment reshape that environment in a way that produces changes 

in thinking. According to Martin, when the context is too highly structured, there is not enough 

variability to stimulate cognitive change. In turn, children are not able to learn from the effect of 

their actions on concrete objects, and many of the benefits that come from working with concrete 

materials are lost. 

When planning instruction that uses concrete materials, educators should be advised that 

there are types of structure that promote concept learning and understanding of deep 

mathematical relations. One type of structure that teachers may want to provide builds on the last 

section: show students the appropriate actions that support concept knowledge and disallow 

inappropriate ones. For example, when teaching a lesson on fractions, it may be detrimental to 

allow students to use fraction tiles non-symbolically before the start of instruction (e.g., as 

projectiles or building materials). During instruction itself it may be important for educators to 

draw students’ attention to how to build and break down units, either by modeling the actions or 

by using verbal or written statements to ground the instruction. Defining a vocabulary of 
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effective actions may help students stay on task when working with concrete materials. 

However, educators need to balance structure with freedom because students may need to use 

concrete materials differently, depending on their level of conceptual understanding and their 

ability to regulate their own behavior. Some freedom of action with concrete materials allows 

students to explore their ideas via testing and exploration with objects. Too much restriction of 

students’ actions may inhibit or delay students’ ability to construct the transferable, deep 

understanding of concepts that educators aim to support. Overall, educators need to strike a 

delicate balance by weighing the costs and benefits of structure versus freedom depending on 

both the goals of their lessons, and the cognitive and behavioral strengths and weaknesses of 

their students. 

Connecting Concrete and Abstract Representations 

 Even when educators choose appropriate concrete materials and structure the 

environment in ways that promote learning from action on those materials, there is still work to 

be done. Without additional input, learners may not be able to transfer the knowledge 

constructed from action on concrete objects to more abstract representations (Kaminski et al., 

this issue). Indeed, knowledge of formal symbols often lags behind intuitive, conceptual 

knowledge. For example, most third- and fourth-grade children can solve Piaget’s high-level 

conservation of quantity problems, which involve the process of the equalization of 

asymmetrical differences (e.g., determining which combination of liquid volumes is the same as 

another combination of liquid volumes, Piaget and Szeminska, 1995|1941). However, they are 

unable to apply that knowledge to generate a correct strategy for solving mathematical 

equivalence problems presented in symbolic form (e.g., 3 + 4 + 5 = 3 + __) (Alibali, 1999; 

McNeil & Alibali, 2005). Indeed, linking nonsymbolic, conceptual understanding to more 

abstract, symbolic representations may be one of the most significant challenges faced by 

teachers today (Greeno, 1989; Sarama & Clements, this issue; Schoenfeld, 1988; Uttal, 2003). 

Sarama and Clements argue that virtual manipulatives are ideally suited for this task because 

they can be programmed to make instantaneous links between manipulatives and corresponding 
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symbols in real time. In the virtual environment, learners can manipulate one representational 

format (manipulatives or symbols) and immediately observe the effects on the other 

representational format. 

 Although not a focus of this special issue, it is important to note a related mechanism for 

connecting the concrete to the abstract: gesture.  Gesture relates concrete action to abstract 

symbols and operations in a way that can guide students’ attention to important relations. For 

example, during a lesson on symbolic equations and inequalities, a teacher observed by Alibali 

and Nathan (2007) pointed to the fulcrum of a pan balance and then to the equal sign. A gesture 

such as this may help students see the relations between the concrete and symbolic 

representations of equality. Important reviews of this work are provided by Alibali and Nathan 

(2007) and Nathan (in press).  In addition, Cook, Mitchell, and Goldin-Meadow (2008) 

demonstrate how students’ own gestures during learning can facilitate retention of the knowledge 

gained during instruction. In these respects, gesture may be particularly helpful for younger 

children (McNeil, Alibali, & Evans, 2000) and for children who have difficulties with language 

(Evans, Alibali, & McNeil 2001). 

 Finally, it may be useful to consider an alternative mechanism for transfer: changing the 

operation of perceptual systems. Goldstone, Landy, and Son (in press) argue that transfer can be 

made automatic by training perceptual analysis of concrete situations so that the student learns to 

attend to important relations and how to interpret changes in a dynamic system. Then, when 

encountering a related situation, the student need not attempt to create an analogy or search 

memory for appropriately related experiences. Instead, the trained perceptual apparatus guides 

attention to the important relations automatically. In line with the research reported in this 

special issue, Goldstone et al. also note that the best learning and transfer occurred when at least 

some of the detail was stripped from the dynamic situations so that students could (presumably) 

focus on the relations. 

Conclusion 

Educators often use concrete materials, but with little empirical guidance about how to 
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use them effectively. There are certainly open questions about how to make learning from 

concrete materials more consistently successful. However, as the articles in this issue suggest, 

educators may be able to make instruction more meaningful by preventing some of the problems 

that often derail learning from concrete materials. Such materials may be more helpful when they 

do not distract students’ attention from the relevant mathematical structure. They may also yield 

better results when used in structured environments that reduce the likelihood that students will 

learn mathematically inaccurate procedures and meanings; at the same time, there needs to be 

some room for experimentation and adaptation so that students can create and refine their 

knowledge. Finally, concrete materials need to be clearly and consistently linked with their 

corresponding symbol systems. In order for knowledge to transfer from concrete materials, 

students need to be shown they are not learning about a new system that is isolated from 

mathematics; rather, they are using concrete materials to develop new knowledge and 

understanding of the symbol system in which they usually work. These changes in manipulative-

based instruction may enable educators to create learning situations that support conceptual 

knowledge of mathematics that is both accessible and transferable.  
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