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Abstract 

This study examined if practice with arithmetic problems presented in a nontraditional 

problem format improves understanding of mathematical equivalence. Children (M age = 8;0; N 

= 90) were randomly assigned to practice addition in one of three conditions: (a) traditional, in 

which problems were presented in the traditional “operations on left side” format (e.g., 9 + 8 = 

17), (b) nontraditional, in which problems were presented in a nontraditional format (e.g., 17 = 9 

+ 8), or (c) no extra practice. Children developed a better understanding of mathematical 

equivalence after receiving nontraditional practice than after receiving traditional practice or no 

extra practice. Results suggest that minor differences in early input can yield substantial 

differences in children’s understanding of fundamental concepts. 
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Benefits of practicing 4 = 2 + 2: Nontraditional problem formats facilitate children’s 

understanding of mathematical equivalence 

 

Decades of research in cognitive development and mathematics education have shown 

that children struggle to understand mathematical equivalence, particularly in symbolic form 

(e.g., Alibali, 1999; Baroody & Ginsburg, 1983; Behr, Erlwanger, & Nichols, 1980; McNeil, 

2008; Renwick, 1932). Mathematical equivalence is the relation between two quantities that are 

interchangeable (Kieran, 1981), and its symbolic form specifies that the two sides of a 

mathematical equation are equal and interchangeable. Mathematical equivalence is arguably one 

of the most important concepts for developing young children’s algebraic thinking (Falkner, 

Levi, & Carpenter, 1999; Knuth, Stephens, McNeil, & Alibali, 2006). 

Difficulties with mathematical equivalence are most apparent when children are asked to 

solve equations that have operations on both sides of the equal sign (e.g., 3 + 7 + 5 = 3 + __), 

henceforth referred to as “mathematical equivalence problems.” Although mathematical 

equivalence problems are not typically included in traditional K-8 curricula (McNeil et al., 2006; 

Seo & Ginsburg, 2003), most people are shocked to discover that children (ages 7-11) solve the 

problems incorrectly. Across nine studies, McNeil (2005) found that the vast majority of children 

(about 82%) did not succeed on the problems. Children’s difficulties with mathematical 

equivalence have been shown to be robust and long-term, persisting among some middle school, 

high school, and even college students (Knuth et al., 2006; McNeil & Alibali, 2005a, Renwick, 

1932). This is cause for concern because individuals who do not develop a correct understanding 

of mathematical equivalence will have difficulties advancing in mathematics and science. 
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Although there is growing evidence that children have difficulties with mathematical 

equivalence, the mechanisms underlying these difficulties and the eventual emergence of correct 

understanding are less clear. A central goal of research in cognitive development is to 

characterize how knowledge is constructed over time. To achieve this goal, we need to move 

beyond simply assessing children’s successes and failures on mathematical tasks toward 

providing detailed accounts of why mathematical equivalence is particularly difficult to learn and 

how such difficulties are ultimately overcome (cf. Siegler, 2000).  

Historically, children’s difficulties with mathematical equivalence have been attributed to 

domain general conceptual limitations in childhood (Collins, 1974, as cited in Kieran, 1980; 

Piaget & Szeminska, 1995/1941), or to developmental changes in some parameter of the working 

memory system such as total capacity, efficiency, or processing speed (e.g., Case, 1978). 

However, several researchers now posit that difficulties are due, at least in part, to children’s 

early experiences with mathematics (e.g., Baroody & Ginsburg, 1983; McNeil & Alibali, 2005b; 

Seo & Ginsburg, 2003; Sherman & Bisanz, 2009). Some of the first evidence came from 

Davydov and colleagues (Davydov, 1991/1969); they showed that first and second grade 

children who participated in an experimental early algebra curriculum could learn to understand 

algebraic concepts, including mathematical equivalence. Since then, international studies have 

shown that children in China, Korea, Turkey, and the Canadian province of Quebec perform 

better than same-aged children in the United States on mathematical equivalence problems 

(Capraro et al., 2010; Freiman & Lee, 2004). Even studies within the U.S. have shown that 

children’s understanding of mathematical equivalence can be improved after several months of 

targeted conceptual instruction (e.g., Baroody & Ginsburg, 1983; Carpenter, Levi, & Farnsworth, 

2000; Jacobs et al., 2007; Saenz-Ludlow & Walgamuth, 1998). Taken together, this work 
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suggests that children’s early learning environments may play a large role in the development of 

children’s understandings and misunderstandings of mathematical equivalence.  

McNeil and Alibali (2005b) recently extended this work by developing a theory of how 

the early learning environment affects the development of children’s understanding of 

mathematical equivalence. They proposed a change-resistance account of children’s difficulties 

with mathematical equivalence. The general idea is that learners (often subconsciously and 

incidentally) detect and extract the patterns routinely encountered in a domain and construct 

long-term memory representations that serve as the default representations in that domain. These 

default representations avoid unnecessary computations in the future (cf. Salthouse, 1991). While 

such representations are typically beneficial (e.g., Chase & Simon, 1973), they can become 

entrenched, and learning difficulties arise when to-be-learned information overlaps with, but 

does not map directly onto, entrenched patterns (e.g., Bruner, 1957; Zevin & Seidenberg, 2002).  

McNeil and Alibali’s (2005b) change-resistance account is consistent with other theories 

that focus on mechanisms of change resistance in development. Examples include Munakata’s 

(1998) strong latent representations, dynamic systems theory’s deep attractor states (Thelen & 

Smith, 1994), and the phenomenon of entrenchment in a connectionist model (Zevin & 

Seidenberg, 2002). On the whole, such theories emphasize the importance of children’s early 

experience and practice in a domain, and they argue that the knowledge children construct early 

on plays a central role in shaping and constraining the path of development. In short, these 

theories attribute children’s learning difficulties to constraints that emerge as a consequence of 

prior learning, rather than to general conceptual or working memory limitations in childhood.  

Although a change-resistance account suggests that constraints emerge as a consequence 

of general learning processes that can affect learning at any age, it emphasizes the power of 



Benefits of practicing 4 = 2 + 2     6 

learners’ initial associations in a domain because such associations have the potential to shape all 

subsequent learning. Consequently, it suggests that we should monitor the constraints that are 

emerging in academic domains during children’s first few years of formal schooling to make 

sure they map onto long-term learning goals. One implication of this theoretical perspective is 

that children may not need months of explicit conceptual instruction to understand a difficult 

concept, as long as the patterns they learn early on in a domain facilitate (rather than hinder) 

acquisition of the to-be-learned concept.  

Applied to the domain of mathematics, a change-resistance account suggests that 

difficulties with mathematical equivalence stem not from general conceptual or working memory 

limitations in childhood, but from children’s representations of patterns routinely encountered in 

the first few years of formal arithmetic instruction (Baroody & Ginsburg, 1983; McNeil & 

Alibali, 2005b; Seo & Ginsburg, 2003). In the U.S., children learn arithmetic in a procedural 

fashion for years before they learn to reason about equations relationally, as expressions of 

mathematical equivalence. Moreover, arithmetic problems are almost always presented with 

operations to the left of the equal sign and the “answer” to the right (e.g., 3 + 4 = 7, McNeil et 

al., 2006; Seo & Ginsburg, 2003). This format does not highlight the interchangeable nature of 

the two sides of an equation (Weaver, 1973). As a result of this overly narrow experience, 

children extract at least three patterns that do not generalize beyond arithmetic. Such patterns 

have been called operational patterns in past work (e.g., McNeil & Alibali, 2005b) because they 

are derived from experience with arithmetic operations, and they reflect operational rather than 

relational thinking (cf. Jacobs et al., 2007). First, children learn a perceptual pattern related to the 

format of mathematics problems, namely the “operations on left side” format (Alibali, Phillips, 

& Fischer, 2009; Cobb, 1987; McNeil & Alibali, 2004). Second, children learn the problem-
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solving strategy ‘‘perform all given operations on all given numbers’’ (McNeil & Alibali, 2005b; 

Perry et al., 1988). Third, children learn to interpret the equal sign operationally as a “do 

something” symbol (Baroody & Ginsburg, 1983; Behr et al., 1980; Kieran, 1981; McNeil & 

Alibali, 2005a). Children’s representations of these operational patterns gain strength during the 

first few years of formal schooling and strengthen to their most entrenched levels around age 

nine (McNeil, 2007). Children come to rely on these operational patterns as their default 

representations when solving mathematics problems. 

Although it may be helpful for children to rely on the operational patterns when working 

on traditional arithmetic problems (e.g., 3 + 4 = __), it is unhelpful when they have to encode, 

interpret, or solve mathematical equivalence problems. For example, when asked to reconstruct 

the problem “7 + 4 + 5 = 7 + __” after viewing it briefly, many children rely on their knowledge 

of the “operations on left side” problem format and write “7 + 4 + 5 + 7 = __” (Alibali et al., 

2009; McNeil & Alibali, 2004). When asked to define the equal sign in a mathematical 

equivalence problem, many children say that it is an arithmetic operator (like + or -) that means 

“calculate the total” (McNeil & Alibali, 2005a). When asked to solve the problem “7 + 4 + 5 = 7 

+ __”, many children rely on their knowledge of the “perform all given operations on all given 

numbers” strategy and put 23 (instead of 9) in the blank (McNeil, 2007; McNeil & Alibali, 

2005b; Falkner et al., 1999; Perry, 1991; Rittle-Johnson, 2006). Additionally, the strength of 

children’s reliance on these three operational patterns influences whether or not children will 

benefit from instruction on mathematical equivalence (McNeil & Alibali, 2005b). Thus, from the 

perspective of a change-resistance account, we can help children develop a better understanding 

of mathematical equivalence simply by reducing their exposure to the overly narrow forms of 

arithmetic practice that reinforce the operational patterns. Ideally, this type of intervention should 
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be administered before children’s representations of the operational patterns strengthen to their 

most entrenched levels around age nine. By re-structuring children’s early experience, we can 

reduce the constraints that typically emerge as a consequence of learning arithmetic and, thus, 

make it possible for children to develop an understanding of mathematical equivalence, even 

without months of explicit conceptual instruction or developmental improvements in some 

parameter of the working memory system. 

In line with this view, some educators have developed highly innovative teacher 

professional development programs and classroom activities designed to re-structure children’s 

early experience with arithmetic and bring out its algebraic character (e.g., Carpenter et al., 2003; 

De Corte & Verschaffel, 1981; Jacobs et al., 2007; Saenz-Ludlow & Walgamuth, 1998; 

Schliemann et al., 2007). By and large, these programs have been successful—children who 

participated in the programs (or whose teachers participated in the professional development) 

improved their understanding of algebraic concepts, including mathematical equivalence.  

Although some of these programs have been successful, they have had several 

limitations. For example, they have required teams of teachers and researchers who were highly 

trained and highly motivated. Such programs were also time intensive, requiring many hours of 

teacher preparation and class time. From the perspective of developmental theory, the most 

crucial limitation is that the programs have made it impossible to pinpoint the specific factors 

that caused improvements in children’s understanding of mathematical equivalence. Was it the 

reduction in children’s exposure to the overly narrow forms of arithmetic practice, or was it the 

explicit conceptual instruction, activities, and discussions? Because the programs were all 

administered as wholes, it is unclear which aspects of the programs were responsible for 

children’s conceptual gains. It is important for theoretical reasons to determine the factors that 
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help children develop an understanding of mathematical equivalence, so we can identify 

mechanisms of cognitive change and change resistance in the development of mathematical 

cognition. It is also important for practical reasons to know if all aspects of the programs are 

necessary, or if the same results could be achieved more efficiently. Bottom line: we need 

systematic experiments to tease apart the factors responsible for the success of such programs.  

We propose that manipulating one factor—the narrowness or broadness of arithmetic 

practice—could address prior limitations and provide a bridge between developmental theory 

and educational practice. In the present experiment, we focused specifically on manipulating the 

narrow problem format. As mentioned above, children typically see the operations to the left of 

the equal sign and the “answer” to the right (e.g., 3 + 4 = 7; McNeil et al., 2006; Seo & 

Ginsburg, 2003). According to a change resistance account, experience with this traditional 

problem format reinforces children’s representations of the operational patterns and constrains 

the development of children’s understanding of mathematical equivalence. This account suggests 

that children’s understanding of mathematical equivalence can be improved by practicing 

problems that are not presented in this traditional format. Thus, in the present study, we 

hypothesized that children would develop a better understanding of mathematical equivalence 

after practicing arithmetic problems presented in a nontraditional format (e.g., 17 = 9 + 8) than 

after practicing problems presented in the traditional format (e.g., 9 + 8 = 17). 

This hypothesis not only follows directly from the predictions of a change-resistance 

account, but also corresponds to the recommendations of educators. Indeed, mathematics 

educators have long called for more diverse, richer exposure to a variety of problem types from 

the beginning of formal schooling (e.g., Blanton & Kaput, 2005; Hiebert et al., 1996; NCTM, 

2000). Several of these experts have suggested that children may benefit from seeing 



Benefits of practicing 4 = 2 + 2     10 

nontraditional arithmetic problem formats (Baroody & Ginsburg, 1983; Denmark, Barco, & 

Voran, 1976; Carpenter et al., 2003; MacGregor & Stacey, 1999; Seo & Ginsburg, 2003; 

Weaver, 1973). However, the present study was the first well-controlled experiment to test if this 

relatively simple modification to arithmetic practice actually helps children develop a better 

understanding of mathematical equivalence. If practice with problems presented in a 

nontraditional format does help children develop a better understanding of mathematical 

equivalence, it will highlight an important bridge between developmental theory and educators’ 

recommendations. It will also support the idea that seemingly minor differences in children’s 

early input can play a central role in shaping and constraining the path of development of 

children’s understanding of fundamental concepts. 

Method 

Participants 

Participants were 100 7- and 8-year old children recruited from a diverse range of public 

and private elementary schools (schools ranged from 0-89% in terms of the percentage of 

children who qualified for free/reduced price lunch). We targeted children in this age range 

because they are old enough to practice arithmetic without extensive instruction, but are young 

enough that their representations of the operational patterns have not yet strengthened to their 

most entrenched levels (McNeil, 2007). Ten children were excluded from the analysis either 

because they did not complete one or more of the tasks (N = 8), or because they were so far 

behind grade level in mathematics that the sessions had to be altered dramatically to meet their 

needs (N = 2; one child was inconsistent in identifying Arabic numerals [1-9], and one child 

could not add two single-digit numbers together unless both addends were ≤ 5). Thus, the final 

sample consisted of 90 children (M age = 8 yrs, 0 mo; 48 boys, 42 girls; 29% African American 
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or black, 1% Asian, 9% Hispanic or Latino, 61% white) from a midwestern U.S. city. 

Approximately 29% received free/reduced price lunch, and only 19% attended elementary 

schools in which 0% of children at the school qualified for free/reduced lunch.  

Design 

The design was a posttest-only randomized experiment. Children were randomly 

assigned to one of three conditions: (a) traditional practice, in which problems were presented in 

the traditional “operations on left side” format, such as 9 + 8 = __, (b) nontraditional practice, in 

which problems were presented in a nontraditional format, such as __ = 9 + 8, or (c) no extra 

practice, in which children did not receive any practice over and above what they ordinarily 

receive at school and home.  

Although our use of random assignment ensured that any differences between conditions 

at the outset of the experiment could be attributed to chance, we nonetheless compared children 

in the three conditions to make sure they did not differ in terms of their background 

characteristics. Importantly, the conditions were well matched. We found no statistically 

significant differences between children in the three conditions in terms of age (in months), F(2, 

85) = 0.20, p = .82; gender, χ2 (2, N = 90) = 1.88, p = .39; ethnicity, χ2 (6, N = 90) = 7.35, p = 

.29; free or reduced price lunch, F(2, 87) = 1.11, p = .33; or enrollment in a school in which 0% 

of children at the school qualified for free or reduced lunch, χ2 (2, N = 90) = 0.15, p = .93. 

All problems in the practice sessions were single-digit addition problems with two 

addends (i.e., a + b = c or c = a + b). Thus, the practice sessions did not include any practice with 

mathematical equivalence problems prior to the assessments. After receiving practice (or no 

input in the “no extra practice” condition), children completed posttest measures of 

understanding of mathematical equivalence and computational fluency. A posttest-only design 
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was necessary to avoid pretest sensitization to our assessment measures. Our goal was to 

examine if a nontraditional form of practicing addition facts causes children to construct a better 

understanding of mathematical equivalence. Thus, it was essential that children not be exposed 

to our particular measures of interest prior to receiving an intervention and posttest. 

Procedure 

Children in the two practice conditions participated individually in four sessions. During 

the first three sessions, children practiced addition facts by playing games one-on-one with a 

tutor (all three sessions) and by answering flashcards (first two sessions). In between these 

sessions, children practiced by completing brief paper-and-pencil homework assignments. 

Overall, children in the practice conditions received approximately 100 minutes of practice prior 

to completing the assessments. After the final practice session was complete, children were 

introduced to a new experimenter who assessed their understanding of mathematical equivalence 

and computational fluency (see Materials section). This new experimenter was used for the 

purposes of assessment, so he or she could be kept uninformed of children’s practice condition. 

Approximately two weeks after the third session, children in the practice conditions participated 

in a brief follow-up session.  

Practice materials 

Practice sessions. The sessions were designed to help children practice solving single-

digit addition facts with two addends (e.g., 9 + 8 = 17, 8 + 6 = 14). Children received practice via 

three main types of activities: (a) two-player games involving cards or dice, (b) flashcards, and 

(c) a computer game. An example of a two-player game is called “Smack it!” An illustration of 

the set-up for this game appears in Figure 1. The child and tutor each used a swatter with a 

suction cup on the end. At the beginning of the game, four addition problems were placed face-
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up on the table, and a pile of number cards was placed face down. To start each round, the tutor 

turned over one of the number cards to serve as the target number. The goal was to be the first 

player to “smack” the addition problem that should have the target number in the blank. Children 

also played other two-player games that were similar in content and scope. The specific games 

played were the same in both practice conditions, and the games were rigged so all children 

practiced the same problems. The only difference between conditions was the format in which 

the problems were presented (traditional versus nontraditional). 

Children also practiced flashcards during the sessions. Before completing the flashcards, 

children received a brief demonstration on how to solve the flashcards. The tutor first presented a 

simple flashcard (e.g., “1 + 1 = __”). Next, the tutor read the problem aloud (e.g., “one plus one 

is equal to blank”). Then, the tutor provided the following instructions: “So I need to figure out 

what number I need to put in the blank to make this side of the equal sign (gestured to indicate 

left side of the problem) the same amount as (point to the equal sign) this side of the equal sign 

(gestured to indicate right side of the problem).” Finally, the tutor offered the correct number 

(e.g., “It’s two! Two should go in the blank because one plus one is equal to two.”). The 

demonstration was similar in the nontraditional condition, except the instructions conformed to 

the nontraditional problem format (e.g., “__ = 1 + 1” instead of “1 + 1 = __”). When solving 

flashcards, children were instructed to read each problem aloud before stating the number that 

should go in the blank. Children completed 26 flashcards in the first practice session and 27 

flashcards in the second practice session. 

Children also played a computer game in each of the three practice sessions. The game 

was a modified version of Snakey Math from Curry K. Software. The child and the tutor each 

controlled one of four snakes on the screen (the other two were computer controlled). Snakes 
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could move up, down, left, and right. At the beginning of each round, a problem (e.g., 9 + 8 = __ 

or __ = 9 + 8) was presented at the bottom of the screen and four numbers appeared in random 

locations on the screen. The goal was to be the first snake to eat the number that should go in the 

blank.  

Homework. Children were asked to continue their practice in between practice sessions 

through brief homework assignments. These assignments were paper-and-pencil worksheets 

designed to take approximately 15 minutes to complete. All problems on the worksheets were 

single-digit addition problems with two addends (i.e., a + b = c or c = a + b). Thus, in line with 

the practice sessions, the worksheets did not include any mathematical equivalence problems. 

Children were told that they would receive a sticker for completing the worksheets and turning 

them in when they returned for the next session. When a child turned in his or her completed 

worksheet, the tutor asked the child to read each problem aloud (along with the number written 

in the blank), and the tutor corrected any errors. Errors were rare; they occurred only on 1% of 

all problems solved by all children across both worksheets. To ensure that all children would be 

able to participate in this “read aloud” activity, tutors kept correctly completed worksheets on 

hand. Thus, children who had not turned in their own completed worksheet participated in the 

“read aloud” activity by using a worksheet that had been correctly completed for them. Most 

children turned in their own completed worksheets (90% completion rate from the first to second 

session, and 68% from the second to third session), and many who did not insisted that they had 

done the homework, but forgot to bring it with them. There were only five children overall (3 

nontraditional and 2 traditional) who failed to turn in both worksheets, and the number of 

children who failed to turn in both, one, or none of the worksheets did not differ across the two 

practice conditions, χ2 (2, N = 60) = 1.56, p = .46.  
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Assessments and Coding  

Measures of understanding of mathematical equivalence. Children completed three 

measures to assess their understanding of mathematical equivalence: (a) equation solving, (b) 

equation encoding, and (c) defining the equal sign. According to the nomological network 

defined by a change-resistance account (McNeil & Alibali, 2005b), these three measures tap a 

system of three distinct, but theoretically related constructs involved in children’s understanding 

of mathematical equivalence. We established inter-rater reliability on the measures by having a 

second coder code the responses of 20% of the children. 

To assess equation solving, children were videotaped as they solved and explained four 

mathematical equivalence problems (1 + 5 = __ + 2, 7 + 2 + 4 = __ + 4, 2 + 7 = 6 + __, 3 + 5 + 6 

= 3 + __). An experimenter placed each equation on an easel and said, “Try to solve the problem 

as best as you can, and then write the number that goes in the blank.” After children wrote a 

number in the blank, the experimenter said, “Can you tell me how you got x” (x denotes the 

given answer) (cf. Alibali, 1999; Perry, 1991; Rittle-Johnson & Alibali, 1999; Siegler, 2002). 

Children’s problem-solving strategies were coded as correct or incorrect based on a system used 

in previous research (e.g., McNeil & Alibali, 2004; Perry et al., 1988). For most problems, 

correctness could be inferred from the solution itself (e.g., for the problem 3 + 5 + 6 = 3 + __, a 

solution of 17 indicated an incorrect “add all” strategy and a solution of 11 indicated a correct 

strategy). If the solution was ambiguous, then strategy correctness was coded based on children’s 

verbal explanation (e.g., for the problem 3 + 5 + 6 = 3 + __, the explanation “I added 3 plus 5” 

indicated an incorrect strategy and the explanation “I added 5 plus 6” indicated a correct 

strategy). The internal consistency of scores on this measure was high, Cronbach’s alpha = .91. 
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Inter-rater reliability was also high; agreement between coders was 99% for coding whether or 

not a given strategy was correct.  

To assess equation encoding, children were asked to reconstruct four mathematical 

equivalence problems (7 + 1 = __ + 6, 3 + 5 + 4 = __ + 4, 4 + 5 = 3 + __, 2 + 3 + 6 = 2 + __) 

after viewing each for 5 seconds (cf. Chase & Simon, 1973; Siegler, 1976). Children’s encoding 

performance was coded as correct or incorrect based on a system used in previous research (e.g., 

McNeil & Alibali, 2004; Rittle-Johnson & Alibali, 1999). Some common errors included 

converting the problem to a traditional addition problem (e.g., reconstructing 4 + 5 = 3 + __ as “4 

+ 5 + 3 = __”), omitting the plus on the right side of the equal sign (e.g., reconstructing 4 + 5 = 3 

+ __ as “4 + 5 = 3 __”), and omitting the equal sign (e.g., reconstructing 7 + 1 = __ + 6 as “7 + 1 

__ + 6”). The internal consistency of scores on this measure was adequate, Cronbach’s alpha = 

.70. Inter-rater reliability was high; agreement between coders was 100% for coding whether or 

not a given reconstruction was correct. 

To assess defining the equal sign, children were videotaped as they responded to a set of 

questions about the equal sign. The experimenter pointed to an equal sign and asked: (1) “What 

is the name of this math symbol?” (2) “What does this math symbol mean?” and (3) “Can it 

mean anything else?” (cf. Behr et al., 1980; Baroody & Ginsburg, 1983; Knuth et al., 2006). 

Children’s responses were categorized according to a system used in previous research (e.g., 

Knuth et al., 2006; McNeil & Alibali, 2005a, b). We were specifically interested in whether or 

not children defined the equal sign relationally as a symbol of mathematical equivalence (e.g., 

“two amounts are the same”). Defining the equal sign relationally has had good concurrent 

validity in previous research (e.g., Knuth et al., 2006). Inter-rater reliability in the present study 
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was high; agreement between coders was 100% for coding whether or not a given definition was 

relational. 

Two weeks after the final session, children in the practice conditions participated in a 

brief follow-up assessment of their understanding of mathematical equivalence. Children solved 

the same four mathematical equivalence problems that they had solved during the original 

assessment. However, children were provided with brief tutelage and feedback at follow-up. 

When the tutor presented each equation, he or she instructed the child as follows: “You need to 

figure out what number goes in the blank (point to blank) to make this side of the equal sign 

(gesture to the left-hand side of the problem) the same amount as (point to the equal sign) this 

side of the equal sign (gesture to the right-hand side of the problem).” If the child provided the 

correct number, the tutor gave positive feedback such as “good job” or “that’s right” and then 

moved on to the next problem. However, if the child provided an incorrect number, the tutor 

instructed the child as follows: “No, that’s not the number that goes in the blank. The correct 

number is x because a plus b is equal to x plus y” (the actual numbers in the problem are used in 

place of a, b, x, and y). The purpose of this follow-up session was to examine potential enduring 

effects of the traditional and nontraditional practice on children’s openness to learn from brief 

instruction on mathematical equivalence. 

 Measures of computational fluency. In addition to the measures of mathematical 

equivalence, children also completed two measures of computational fluency. The first measure 

was the Math Computation section of Level 8 of the Iowa Tests of Basic Skills, which is a 

standardized, timed measure of arithmetic computation that yields a percentile rank. Children 

also completed another measure of arithmetic skill (cf. Geary, Bow-Thomas, Liu, Siegler, 1996; 

Siegler, 1988). Students were videotaped as they solved a set of addition problems. Problems 
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were presented one at a time in the center of a computer screen. For each trial, a fixation point 

appeared in the center of the screen followed by the prompts “ready,” “set,” and “go,” displayed 

for 1 second each. The two addends were then presented on the screen (e.g., 9 + 8), and they 

remained on the screen until the student said his or her answer aloud. Reaction time was 

recorded. Additionally, after each trial, students were asked: “Can you tell me how you got x?” 

(x denotes the given answer).  

Results 

According to the nomological network defined by McNeil and Alibali’s (2005b) change-

resistance account, equation solving, equation encoding, and defining the equal sign are three 

distinct, but theoretically related constructs involved in children’s understanding of mathematical 

equivalence. Thus, scores on the measures should be moderately correlated with one another. 

Consistent with this account, scores on the measures were correlated: equation solving and 

equation encoding, r = .56, p < .001; equation solving and defining the equal sign, r = .35, p = 

.001, equation encoding and defining the equal sign, r = .21, p = .05. This pattern of correlations 

is consistent with previous research (McNeil & Alibali, 2004, 2005b; Rittle-Johnson & Alibali, 

1999) and provides some evidence of construct validity (Cronbach & Meehl, 1955). 

Table 1 presents children’s performance on each of the measures of understanding of 

mathematical equivalence by condition. As shown in the table, the effect of condition was the 

same across all three measures, so we created a composite measure for more efficient 

presentation. Children received one point if they scored above the average on the measure of 

equation solving, one point if they scored above the average on the measure of equation 

encoding, and one point if they provided a relational definition on the measure of equal sign 

understanding. Note that the results were robust and did not depend on how we assigned points 
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for the composite measure (e.g., above the average, above the median, at least one correct, etc.). 

Scores on the composite measure ranged from 0 to 3 (M = 0.70, SD = 0.97).  

We performed an analysis of variance (ANOVA) with condition (traditional practice, 

nontraditional practice, or no extra practice) as the independent variable and score on the 

composite measure as the dependent measure. There was a statistically significant effect of 

condition, F(2, 87) = 6.24, p = .003, 

€ 

ηp
2= .13. Note that 

€ 

ηp
2  is the same as 

€ 

η2 and 

€ 

ηG
2  for one-way 

ANOVA, and a value of .13 is a medium effect (Bakeman, 2005). Importantly, as predicted, 

children developed a better understanding of mathematical equivalence after receiving 

nontraditional practice (M = 1.17, SD = 1.09) than after receiving traditional practice and no 

extra practice (M = 0.47, SD = 0.81), F(1, 87) = 11.76, p = .001, Cohen’s d = 0.73. A Cohen’s d 

value of 0.73 is a medium-to-large effect (Cohen, 1992). There was no statistical difference in 

understanding of mathematical equivalence after receiving traditional practice (M = 0.37, SD = 

0.72) versus no extra practice (M = 0.57, SD = 0.90), F(1, 87) = 0.72, p = .40.  

 Given that scores on the composite measure were not normally distributed, we also 

performed a nonparametric analysis to ensure that the observed effects did not depend on the 

method of analysis. We first classified children according to whether or not they scored at least 

one point on the composite measure of understanding of mathematical equivalence. Across 

conditions, 40% of children scored at least one point. We then used binomial logistic regression 

to predict the log of the odds of scoring at least one point on the measure (see Agresti, 1996). 

Two Helmert contrast codes were used to represent the three levels of condition (1) 

nontraditional practice versus the two “control” conditions and (2) traditional practice versus no 

extra practice. Results were consistent with the ANOVA. As predicted, participants in the 

nontraditional practice condition were more likely than participants in the other two conditions to 
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score at least one point on the measure (18 of 30 [60%] versus 18 of 60 [30%]), 

€ 

ˆ β  = 1.26, z = 

2.69, Wald (1, N = 90) = 7.22, p = .007. The model estimates that the odds of scoring at least one 

point on the measure are more than three and a half times higher after participating in the 

nontraditional practice condition than after participating in one of the other conditions. An odds 

ratio of 3.5 is a medium-to-large effect (Haddock, Rindskopf, & Shadish, 1998). There was no 

statistical difference between the traditional practice and no extra practice conditions (8 of 30 

[27%] versus 10 of 30 [36%]), 

€ 

ˆ β  = 0.32, z = 0.56, Wald (1, N = 60) = 0.32, p = .57. 

 Results were similar at follow-up. Children’s performance in the presence of brief 

tutelage and feedback at follow-up was relatively good compared with how children typically 

perform on mathematical equivalence problems (M = 1.82, SD = 1.69). Consistent with 

predictions, children who had participated in the nontraditional practice condition solved more 

mathematical equivalence problems correctly (M = 2.33, SD = 1.73) than did children who had 

participated in the traditional practice condition (M = 1.30, SD = 1.53), F(1, 58) = 6.07, p = .02, 

€ 

ηp
2  = .10. 

Importantly, the gains in understanding of mathematical equivalence (shown above) did 

not appear to be accompanied by any detectable decrements in computational fluency. Children 

in the nontraditional practice condition had a similar average percentile rank (M = 52.70, SD = 

24.56) to children in the traditional practice (M = 52.93, SD = 29.65) and no extra practice (M = 

51.20, SD = 27.80) conditions on Level 8 of the Math Computation section of the Iowa Tests of 

Basic Skills, F(2, 87) = 0.035, p = .96. They also performed similarly when solving single-digit 

addition facts: accuracy, F(2, 87) = 0.62, p = .54, and average reaction time, F(2, 87) = 0.18, p = 

.83.  
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We performed a more targeted analysis of how the conditions affected computational 

fluency on the single-digit addition facts, and it produced similar findings. We compared 

children’s performance on the three most difficult single-digit addition problems used in our 

assessment (9 + 8, 7 + 9, and 8 + 6) to their performance on three easier problems that were 

matched to the difficult problems based on one of the addends (9 + 2, 7 + 5, and 4 + 6). Note that 

the practice sessions were structured so that children received nearly twice as much practice with 

the difficult problems as they did with the matched problems. Table 2 displays the average 

reaction time and accuracy on each problem type by condition. Accuracy on both problem types 

was near ceiling in all conditions, so we focused our analysis on reaction time. We performed a 3 

(condition: traditional practice, nontraditional practice, no extra practice) x 2 (problem type: 

difficult versus matched) mixed-factor analysis of variance (ANOVA) with repeated measures 

on problem type, and average reaction time as the dependent measure. Not surprisingly, average 

reaction time was slower on the difficult problems than it was on the matched problems, F(1, 87) 

= 33.25, p < .001, 

€ 

ηp
2  = .28. The main effect of condition was not statistically significant, F(2, 

87) = 0.37, p = .69, but the anticipated interaction between problem type and condition was 

statistically significant, F(2, 87) = 3.15, p = .048, 

€ 

ηp
2  = .07. As shown in the table, children in the 

two practice conditions were faster than children in the no extra practice condition on the 

difficult problems, but children in all conditions had similar reaction times on the easier, matched 

problems. Children in the nontraditional condition had similar reaction times to children in the 

traditional condition on both problem types. 

Discussion 

The present study provides the first well-controlled evidence that children’s 

understanding of mathematical equivalence can be improved simply by modifying the format in 
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which arithmetic problems are presented during practice. Results suggest that children who 

practice problems presented in a nontraditional format (e.g., 17 = 9 + 8) develop a better 

understanding of mathematical equivalence than children who practice problems presented in the 

traditional format (e.g., 9 + 8 = 17). Importantly, these improvements in understanding do not 

seem to be accompanied by any detectable decrements in computational fluency. 

Given the extent to which children are exposed to arithmetic in the early school years, it 

is not surprising that they become well versed in the patterns routinely encountered in arithmetic 

problems (McNeil & Alibali, 2005b). Indeed, many studies have shown that children possess 

powerful learning mechanisms that enable them to pick up on stable structure when it is present 

in a domain (e.g., Fiser & Aslin, 2002; Gentner & Medina, 1998; Gomez, 2002; Saffran, 2003; 

Sheya & Smith, 2006; Sloutsky & Fisher, 2008). By detecting and extracting the stable patterns 

in a domain, learners can construct long-term memory representations to serve as the default 

representations in that domain so unnecessary computations can be circumvented in the future 

(cf. Salthouse, 1991). Although these default representations can be helpful at times (e.g., Chase 

& Simon, 1973), they also can become entrenched, thus increasing learners’ resistance to change 

(e.g., McNeil & Alibali, 2005b; Zevin & Seidenberg, 2002; Bruner, 1957; Luchins, 1942). 

In the case of children’s representations of arithmetic, there are at least three entrenched 

patterns: the “operations on left side” problem format, the “perform all given operations on all 

given numbers” strategy, and the “calculate the total” concept of the equal sign (McNeil & 

Alibali, 2005b). Although children’s internalization of these operational patterns leads to fast and 

accurate performance on traditional arithmetic problems (e.g., 3 + 4 = __, McNeil & Alibali, 

2004), it hinders understanding of and performance on mathematical equivalence problems, 

which overlap with, but do not map directly onto the patterns (McNeil & Alibali, 2004, 2005b). 
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Results of the present study suggest that meaningful practice with problems presented in 

a nontraditional format helps children improve their understanding of mathematical equivalence. 

We have argued that this is because nontraditional practice weakens the entrenchment of the 

overly narrow operational patterns and exposes children to patterns that facilitate (rather than 

hinder) acquisition of the to-be-learned concept. Every time children are meaningfully exposed 

to an arithmetic problem that has the operations to the right side of the equal sign, they increase 

the number of stored instances that do not correspond to the entrenched, “operations on left side” 

pattern. Eventually, children’s representation of the “operations on left side” format loses its 

predictive power, and children become less likely to activate it automatically every time they 

encounter a mathematics problem. Subsequently, when children are presented with a 

mathematical equivalence problem, they are less likely to rely on their representations of the 

overly narrow operational patterns and are more likely to encode the problem correctly and 

reflect on an appropriate solution strategy that takes into account the novel problem structure.  

In the present study, we administered nontraditional practice to children ages 7-8 because 

their representations of the operational patterns have not yet been strengthened to their most 

entrenched levels (see McNeil, 2007). The observed benefits of nontraditional practice may be 

even greater for younger children (e.g., ages 5-6), who have less established representations of 

the operational patterns. Moreover, the benefits may be weaker for older children (e.g., ages 9-

10), who have already strengthened representations of the operational patterns to their most 

entrenched levels. Once representations of the operational patterns are fully entrenched, 

nontraditional arithmetic practice may not be enough on its own to weaken them enough to 

enable children to develop a correct understanding of mathematical equivalence. 
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Along with weakening children’s representations of the operational patterns, there are at 

least two additional processes by which meaningful practice with nontraditional problem formats 

could help children develop an understanding of mathematical equivalence. First, the sheer 

novelty of a nontraditional problem format may bolster children’s attention during practice and 

lead them to be more mindful of what they are practicing. Langer (2000) defines mindfulness as 

“a flexible state of mind in which [one is] actively engaged in the present, noticing new things 

and sensitive to context” (p. 220). This open and adaptable perspective may reduce resistance to 

change and make it more likely for problem solvers to encode novel aspects of a problem, 

choose the most appropriate solution strategy, and extract relevant conceptual information. 

Indeed, in Luchins’s (1942) water jar experiments, participants became less resistant to change 

their use of a familiar, suboptimal strategy and more likely to choose the most appropriate 

strategy after receiving a simple warning to be mindful. It is possible that the nontraditional 

problem format serves as a visual warning for children to be mindful, and in turn, helps them 

gain conceptual knowledge from their arithmetic practice. 

 Second, meaningful practice with nontraditional formats may enhance understanding of 

mathematical equivalence because it diverges from children’s established knowledge and 

provides an opportunity for cognitive conflict. Indeed, according to Piaget (1980, cf. Inhelder, 

Sinclair, & Bovet, 1974; VanLehn, 1996), cognitive conflict is the primary impetus for cognitive 

change. When children see operations to the right side of the equal sign, it conflicts with their 

established knowledge of arithmetic. It is possible that this conflict forces children to adjust their 

thinking to accommodate the nontraditional format (but see Karmiloff-Smith, 1984; Siegler & 

Jenkins, 1989 for evidence that cognitive change occurs in the absence of cognitive conflict).  
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Overall, the present study adds to the evidence suggesting that early experience, rather 

than general conceptual or working memory limitations in childhood, is a primary factor behind 

children’s difficulties with mathematical equivalence. We have long known that even young 

children can understand mathematical equivalence when given targeted, conceptual instruction 

(Carpenter et al., 2000; De Corte & Verschaffel, 1981; Jacobs et al., 2007; Saenz-Ludlow & 

Walgamuth, 1998), or when given special instruction designed to circumvent the working 

memory demands of mathematical equivalence problems (e.g., Case, 1978). However, the 

present study is the first to show that children can develop a better understanding of 

mathematical equivalence, even without explicit instruction. Moreover, it is the first to show that 

practice with arithmetic can be re-structured in a way that helps children develop conceptual 

understanding at the same time as they work to improve computational fluency.  

More broadly, results support the idea that relatively small changes in the structure of the 

environment can affect the development of children’s understanding of important concepts. 

Researchers have a history of showing that macro-level differences in children’s environment, 

such as differences in socio-economic status or quality of the early childcare setting, have the 

potential to affect cognitive development (Bradley & Corwyn, 2002; Tran & Weinraub, 2006). 

More recently, however, we have started to recognize that even differences in relatively specific, 

micro-level factors, such as the amount of mathematically-relevant speech used in preschool 

classrooms or how often young children play number board games, can exert large effects on 

children’s cognitive development (e.g., Klibanoff, Levine, Huttenlocher, Vasilyeva, & Hedges, 

2006; Ramani & Siegler, 2008). According to this view, even seemingly minor differences in the 

scope, sequence, or format of input may snowball to yield substantial differences in the 

development of children’s understanding of important concepts, particularly in mathematics (cf. 
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Li et al., 2008).  

Despite the positive effects of the nontraditional problem format observed in this study, at 

least four questions remain unanswered. First, why did the nontraditional condition not lead to 

greater gains in understanding of mathematical equivalence? On average, children in the 

nontraditional condition solved and reconstructed fewer than half of the mathematical 

equivalence problems correctly, and only 23% defined the equal sign relationally (see Table 1). 

Although their performance was better than that of children in the other two conditions, it was 

far from ideal. These findings suggest that the operational view is resistant to change (cf. Alibali, 

1999; McNeil, 2008). One possibility is that children develop an operational view even before 

the start of formal schooling (Falkner et al., 1999) based on their informal interpretation of 

addition as a unidirectional process (Baroody & Ginsburg, 1983). According to this perspective, 

arithmetic problems may activate the operational view to some degree, regardless of format. If 

this is true, then we may not be able to eradicate the operational view simply by exposing 

children to different arithmetic problem formats (Denmark et al., 1976). Instead, it may be 

necessary to expose children to the equal sign outside of an arithmetic context (e.g., 28 = 28) 

first, so they can solidify a relational view before moving on to a variety of arithmetic problem 

formats (Baroody & Ginsburg, 1983; Denmark et al., 1976; McNeil, 2008; Renwick, 1932).  

Second, how does extended practice with the nontraditional problem format affect 

children’s computational fluency? Children who participated in our practice conditions received 

approximately 100 minutes of supplementary practice with arithmetic. Within this schedule, the 

traditional and nontraditional practice conditions produced similar levels of computational 

fluency, but it is possible that the two conditions would diverge after extended practice. Because 

our participants already had a few years of experience with traditional arithmetic practice, it is 
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unclear if comparable levels of computational fluency would have resulted if children had been 

presented with both formats right from the start of schooling. Variability in practice can lead to 

wider generalization but slower learning (Brown, Kane & Echols, 1986; Chen, 1999); thus, 

exposing children to both formats from the start of schooling could slow their learning of basic 

arithmetic facts (but see Carpenter et al., 1989 for an alternative view). However, it is important 

to note that even if learning of basic facts was slowed to some degree, it would be a relatively 

small price to pay for wider generalization and an easier transition to upper-level mathematics. 

Third, what are the long-term consequences of improving children’s understanding of 

mathematical equivalence? One of the practical motivations behind research in this area is the 

need for better “preparation of students for entry into, and success in, Algebra” (National 

Mathematics Advisory Panel, 2008). We found that practice with the nontraditional format 

improved children’s understanding of mathematical equivalence, and these improvements 

continued to be evident two weeks later. However, the longer-term consequences of such 

improvements have never been tested. Future studies should investigate the consequences of 

developing a better understanding of mathematical equivalence in the early grades and whether 

or not it translates to greater success in upper-level mathematics classes, including Algebra. 

Finally, what are the effects of nontraditional practice in a classroom setting? The present 

study was a tightly controlled experiment in which children practiced arithmetic one-on-one with 

an experimenter who stuck to a meticulous script. More typical learning environments are often 

less structured and less conducive to one-on-one instruction. In order to determine the practical 

effectiveness of nontraditional arithmetic practice, we will need to investigate whether the results 

generalize to children practicing arithmetic in a classroom setting.  



Benefits of practicing 4 = 2 + 2     28 

Conclusion 

A primary goal of research in cognitive development is to understand the construction of 

knowledge and how it changes over time. The present study addressed this goal by providing 

evidence to suggest that the difficulties children have with particular concepts may not always be 

caused by something children lack relative to adults, such as general conceptual structures or 

working memory resources. Instead, difficulties can emerge as a consequence of prior learning in 

the target domain. Specifically, difficulties can emerge when aspects of the to-be-learned concept 

overlap with, but do not map directly onto, the patterns that children learn from their early 

experience in the domain. These findings suggest that parents and educators may want to pay 

attention to the structure of children’s early learning environments to make sure children are not 

being consistently exposed to narrow patterns that constrain future learning.  

Importantly, the present findings create a bridge between developmental theory and a 

growing literature in mathematics education that suggests that children should not be exposed to 

arithmetic facts presented in a single, traditional format as they are year after year in classrooms 

across the United States (Baroody & Ginsburg, 1983; Carpenter et al., 2003; McNeil et al., 2006; 

Seo & Ginsburg, 2003). We have shown here that a simple modification to the problem format 

may provide a more suitable learning context that can enhance the development of children’s 

understanding of mathematical equivalence. This finding suggests that problem contexts may 

exert a larger effect on children’s cognitive developmental processes than once thought, and that 

general conceptual or working memory limitations, though important, cannot fully explain 

children’s misconceptions in mathematics. To better understand the construction of knowledge 

and how it changes over time, it is essential to continue investigating how children’s early 

experiences in a domain shape and constrain the path of development. 
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Table 1.  

Performance on each of the measures of understanding of mathematical equivalence by condition  

 

Task & performance measure Nontraditional Traditional No extra practice 

Equation solving  

     M (SD) 

     % above average 

 

1.43 (1.72) 

47 

 

0.33 (1.06) 

10 

 

0.57 (1.14) 

23 

Equation encoding  

     M (SD) 

     % above average 

 

1.47 (1.41) 

47 

 

0.87 (1.22) 

23 

 

0.80 (0.96) 

23 

Defining the equal sign 

     % who defined relationally 

 

23 

 

3 

 

10 
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Table 2.  

Accuracy and reaction time on the difficult and matched addition problems by condition. 

 

Problem type & performance measure Nontraditional Traditional No extra practice 

Difficult problems 

     M reaction time in seconds (SD) 

     % correct (SD) 

 

7.64 (4.08) 

92 (14) 

 

6.98 (3.86) 

90 (25) 

 

9.16 (6.80) 

86 (26) 

Matched problems 

     M reaction time (SD) 

     % correct (SD) 

 

5.36 (2.86) 

96 (12) 

 

5.45 (3.40) 

93 (16) 

 

4.84 (2.71) 

93 (16) 
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Figure 1. Illustration of the traditional (top panel) and non-traditional (bottom panel) versions of 

one of the games used in the practice sessions. 


