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Abstract 

This experiment tested the hypothesis that organizing arithmetic fact practice by 

equivalent values facilitates children’s understanding of math equivalence. Children (M age = 

8;6, N = 104) were randomly assigned to one of three practice conditions: (a) equivalent values, 

in which problems were grouped by equivalent sums (e.g., 3 + 4 = 7, 2 + 5 = 7, etc.), (b) 

iterative, in which problems were grouped iteratively by shared addend (e.g., 3 + 1 = 4, 3 + 2 = 

5, etc.), or (c) no extra practice, in which children did not receive any practice over and above 

what they ordinarily receive at school and home. Children then completed measures to assess 

their understanding of math equivalence. Children who practiced facts organized by equivalent 

values demonstrated a better understanding of math equivalence than children in the other two 

conditions. Results suggest that organizing arithmetic facts into conceptually related groupings 

may help children improve their understanding of math equivalence. 
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It pays to be organized: Organizing arithmetic knowledge around equivalent values facilitates 

understanding of math equivalence  

Researchers often study macro-level differences in children’s environments and how they 

affect children’s learning and development (e.g., Bradley & Corwyn, 2002; Jordan, 

Huttenlocher, & Levine, 1992; Tran & Weinraub, 2006). However, a growing body of research 

suggests that even relatively minor differences in the structure of children’s early input can play 

a central role in shaping and constraining children’s understanding of fundamental concepts 

(e.g., Klibanoff, Levine, Huttenlocher, Vasilyeva, & Hedges, 2006; McNeil, Fyfe, Petersen, 

Dunwiddie, Brletic-Shipley, 2011; Ramani & Siegler, 2008). These studies suggest that parents 

and teachers must consider the specific input they provide to children and how the structure of 

that input maps onto the underlying structure of the conceptual domain they want children to 

learn. Indeed, as Gelman and Williams (1998) have cogently argued, the structure of one’s 

learning environment can determine the structure of one’s conceptual knowledge and its ultimate 

compatibility with the target domain. In the present study, we examined how a seemingly minor 

modification to the structure of arithmetic practice affects children’s understanding of 

mathematical equivalence. 

Mathematical equivalence is one of the most fundamental concepts in mathematics. 

Formally represented by the equal sign, it is the principle that two sides of an equation are 

interchangeable or represent the same value. Researchers and educators alike agree that math 

equivalence is one of the most important concepts for developing children’s early algebraic 

thinking (Falkner, Levi, & Carpenter, 1999; Jacobs, Franke, Carpenter, Levi, & Battey, 2007; 

Kieran, 1992; Knuth, Stephens, McNeil, & Alibali, 2006; National Research Council, 2001; 

Steinberg, Sleeman & Ktorza, 1990). Moreover, because algebra serves as a gateway not only 
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into higher mathematics but also into higher education more generally, building an early 

understanding of math equivalence may have positive consequences for children’s long-term 

academic success (Adelman, 2006; Blanton & Kaput, 2005; Moses & Cobb, 2001; National 

Research Council, 2001; NCTM, 2000).  

Unfortunately, most children in the U.S. develop a poor understanding of math 

equivalence (e.g., Alibali, 1999; Baroody & Ginsburg, 1983; Behr, Erlwanger, & Nichols, 1980; 

Falkner et al., 1999; Jacobs et al., 2007; Li, Ding, Capraro, & Capraro, 2008; McNeil, 2008; 

Perry, 1991; Powell & Fuchs, 2010; Renwick, 1932; Weaver, 1973). This is most typically 

evidenced by children’s failure to solve what are generally termed “mathematical equivalence 

problems” – open equations with operations on both sides of the equal sign (e.g., 3 + 7 + 5 = 3 + 

__). For example, across nine studies, McNeil (2005) found that the vast majority (about 80%) of 

children in the U.S. aged 7-11 failed to solve these problems correctly. 

 Historically, some researchers have attributed children’s difficulties with math 

equivalence to domain general conceptual limitations in childhood (Collis, 1974, as cited in 

Kieran, 1980; Piaget & Szeminska, 1995/1941), or to developmental changes in some parameter 

of the working memory system such as total capacity, efficiency, or processing speed (e.g., Case, 

1978). These researchers posit that children’s misunderstandings of math equivalence result from 

some cognitive deficit that children have relative to adults. However, a growing body of research 

suggests that children’s difficulties are largely due to children’s early experiences with 

mathematics (e.g., Baroody & Ginsburg, 1983; Li et al., 2008; McNeil, 2008; McNeil & Alibali, 

2005b; Seo & Ginsburg, 2003). This view is typified by McNeil and Alibali’s (2005b) change-

resistance account, which suggests that children’s difficulties with math equivalence stem from 

the extraction and entrenchment of patterns children routinely encounter in their formal 
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experiences with arithmetic. 

The majority of children in the U.S. learn arithmetic in a very procedural fashion. 

Moreover, arithmetic problems are almost always presented in a traditional format with the 

operations to the left of the equal sign and the “answer” to the right (e.g., 3 + 4 = 7, McNeil et 

al., 2006; Seo & Ginsburg, 2003). Overuse of this format to the exclusion of others fails to 

highlight the interchangeable nature of the two sides of an equation (McNeil et al., 2011; 

Weaver, 1973). As a result of this overly narrow experience, children often extract three 

operational patterns that do not generalize beyond arithmetic (McNeil & Alibali, 2005b). First, 

children learn a perceptual pattern: the “operations on left side” format (Alibali, Phillips, & 

Fischer, 2009; Cobb, 1987; McNeil & Alibali, 2004). Second, children learn a default problem-

solving strategy, which is to “perform all given operations on all given numbers” (McNeil & 

Alibali, 2005b; Perry, Church, & Goldin-Meadow, 1988). Finally, children interpret the equal 

sign as a “do something” symbol that means “add up all the numbers” (Baroody & Ginsburg, 

1983; Behr et al., 1980; Kieran, 1981).  

Reliance on these operational patterns often persists for many years, serving as an 

obstacle to the construction of flexible problem solving skills and algebraic reasoning (Knuth et 

al., 2006; McNeil et al., 2006; McNeil, Rittle-Johnson, Hattikudur, & Petersen, 2010; Steinberg 

et al., 1990). As a result, most elementary school children (ages 7-11) solve problems such as 7 + 

4 + 5 = 7 + __ incorrectly by adding all the numbers and writing 23 in the blank (McNeil & 

Alibali, 2005b). Furthermore, when asked to reconstruct problems such as “7 + 4 + 5 = 7 + __” 

after viewing them briefly, many children rely on the “operations on left side” pattern and write 

“7 + 4 + 5 + 7 = __” (Alibali et al., 2009; McNeil & Alibali, 2004). Indeed, most children 

actually reject closed equations that do not take a standard a + b = c format, considering 
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equations such as 3 = 3 and 7 + 6 = 6 + 6 + 1 to be false or nonsensical (Baroody & Ginsburg, 

1983; Behr et. al., 1980; Falkner et al, 1999). Finally, few children interpret the equal sign as a 

relational symbol that asserts a proposition about the interchangeability of the two sides of an 

equation (Baroody & Ginsburg, 1983; McNeil & Alibali, 2005a).  

Although most children in the U.S. exhibit these misconceptions, a substantial minority 

constructs a good understanding of math equivalence, despite receiving the same formal 

experiences with arithmetic. For example, in each of the aforementioned studies approximately 

10-25% of children solved math equivalence problems correctly, reconstructed the problems 

correctly after viewing them briefly, and defined the equal sign relationally. These “successful” 

children attended the same schools, learned from the same teachers and textbooks, came from 

families with comparable socio-economic status, and even scored similarly on tests of 

computational fluency as children who were “unsuccessful.” What factors led these children to 

extract the appropriate patterns from their formal experiences with arithmetic? Why did they not 

acquire entrenched representations of the operational patterns like most other children did? 

At first glance, one may simply assume that the successful children are just “smarter” or 

“better at mathematics overall.” However, that position is untenable, given that researchers have 

not found strong positive correlations between understanding of math equivalence and 

performance on tests of computational fluency. They also have not found associations between 

understanding of math equivalence and other proxies of general competence, such as age or 

performance on standardized achievement tests. In fact, within some age ranges (e.g., 7-9) 

younger children actually perform better solving math equivalence problems than do older 

children (McNeil, 2007). Thus, many of the general factors that are typically associated with the 
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development of math cognition do not appear to play a leading role in children’s understanding 

of math equivalence. Instead, specific aspects of domain knowledge may play a greater role. 

One aspect of domain knowledge that may affect children’s understanding of math 

equivalence is the way in which children’s knowledge of arithmetic facts is organized. Decades 

of research have demonstrated that the organization of a person’s knowledge is at least as 

influential on learning and performance in a given domain as the amount of knowledge that 

person might possess (e.g. Chase & Simon, 1973; Lindberg, 1980; see Chi & Ceci, 1987 for a 

review). Thus, we should expect the organization of children’s knowledge of arithmetic facts to 

have profound effects on what they learn from their formal experiences with arithmetic. 

Consistent with this view, Gelman & Williams (1998) suggested that children who organize their 

knowledge of arithmetic such that they understand equivalent ways to state a math problem (e.g., 

2 + 5 = 7 and 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7) have a redundancy in their framework of numerical 

concepts that allows them to map their learning of arithmetic facts onto arithmetic principles. 

That is, having several different ways to represent the number “7” may help children construct a 

deeper understanding both of the number “7” and of arithmetic principles such as the properties 

of addition (e.g., commutative, associative, additive identity) that allow the production of 

multiple equivalent representations. An understanding of the properties of addition provides the 

basis for constructing an algebraic understanding of math equivalence (NCISLA, 2000).  

Following this logic, we predicted that arithmetic practice that is designed to help 

children mentally organize arithmetic facts in conceptually related groupings leads children to 

gain a better understanding of math equivalence than practice that is not designed for this 

purpose. We were specifically interested in practice designed to help children organize their 

knowledge of arithmetic around number combinations that yield equivalent sums (e.g., 1 + 6, 4 + 
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3, 1 + 3 + 3, etc.). There are at least three ways in which this type of organized practice may 

facilitate understanding of math equivalence. First, as mentioned above, it may highlight that 

there are many different ways to represent a number and help children construct an 

understanding of the addition principles that are the basis for understanding math equivalence. 

Second, when problems with equivalent sums are practiced in succession, addend pairs that are 

equal to one another (e.g., 3 + 4 and 5 + 2) become increasingly inter-associated. Subsequently, 

when faced with an equation that involves one or more of those addend pairs (e.g., 3 + 4 = __ + 

2), children who have practiced with this organization may see 3 + 4 and immediately activate 

other equivalent addend pairs, including 5 + 2. The concurrent activation of both 3 + 4 and 5 + 2 

may then operate via top-down processes to influence encoding of, strategy selection on, and/or 

conceptualization of equations involving these facts (cf. Bruner, 1957; McGilly & Siegler, 1990; 

Rumelhart, 1980). Third, practice with problems organized by equivalent sums may enable 

children to induce equivalent added pairs based on transitive relations (e.g., if 3 + 4 = 7 and 5 + 2 

= 7, then 3 + 4 = 5 + 2). This particular insight—that an addend pair can be equivalent not only 

to a single number, but also to other addend pairs—is a key milestone in the construction of an 

understanding of math equivalence (Behr et. al., 1980; Kieran, 1981). Thus, we hypothesize that 

arithmetic practice that is organized by equivalent sums will lead children to construct a better 

understanding of math equivalence than practice that is not organized by equivalent sums. 

McNeil et al. (2010) found anecdotal support for this hypothesis. In the study, 

undergraduates who had learned arithmetic in the United States (in elementary school) exhibited 

a poorer understanding of math equivalence than did undergraduates who had learned arithmetic 

in countries in East Asia that consistently perform at the top in international comparisons of 

mathematics performance. The effect was large, and it was not due to general differences in 
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mathematics aptitude as measured by scores on the quantitative section of college entrance 

exams (e.g., ACT and SAT). At the end of the study, McNeil et al. interviewed the 

undergraduates about their experiences with arithmetic in elementary school (see McNeil, 2009). 

A majority of the undergraduates who learned arithmetic in high-achieving countries 

remembered learning and practicing arithmetic organized by equivalent values (e.g., “all the 

addend pairs that equal 10”). In contrast, undergraduates who learned arithmetic in the U.S. 

remembered learning and practicing arithmetic problems organized in an iterative fashion like a 

traditional arithmetic table (i.e., all the ones, all the twos, all the threes, etc.). It is possible that 

this difference in the organization of arithmetic practice was one of the many factors contributing 

to the differences between groups in understanding of math equivalence. 

The anecdote underscores our hypothesis that it is practice organized by equivalent 

values specifically—rather than organized practice in general—that should lead to improved 

understanding of math equivalence. Alternative organizational structures, such as the iterative 

practice identified by the undergraduates in McNeil et al.’s (2010) study, should not yield the 

same benefits as practice organized by equivalent sums. Although iterative practice does provide 

mental organization, it does not highlight equivalent values or the interchangeability of 

arithmetic expressions. 

In the present study, we went beyond anecdotes and performed an experiment to test the 

effects of different organizations of arithmetic practice on children’s knowledge. We predicted 

that subtle changes to the ordering of addition facts practice could lead to improvements in 

understanding of math equivalence. Previous research has shown that well organized arithmetic 

facts practice can facilitate understanding that extends beyond simple retrieval of those facts. For 

example, Canobi (2009) found that organizing arithmetic practice in conceptual sequences, such 
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as pairs of commuted addition problems, increased second graders’ use of more sophisticated 

solution strategies, such as decomposition and retrieval (cf., Steinberg, 1985). Additionally, 

McNeil et al. (2011) found that children who received arithmetic practice with problems 

presented in a nontraditional format (e.g., 17 = 9 + 8) constructed a better understanding of math 

equivalence than children who received arithmetic practice with problems presented in the 

traditional format (e.g., 9 + 8 = 17). These results indicate that seemingly small changes to 

children’s early arithmetic practice can help restructure knowledge in ways that support adaptive 

strategy use and conceptual understanding.  

To test our hypothesis, we randomly assigned individual children to one of three 

conditions in which they received practice with addition facts organized by equivalent values, 

practice with addition facts organized in an iterative fashion, or no extra practice. Following the 

intervention (or no intervention for children in the no extra practice condition), we assessed 

children’s understanding of math equivalence. After this assessment, we randomly assigned 

children in the no extra practice condition to one of the two practice conditions. Finally, all 

children received a follow-up assessment two weeks after their final practice session. Thus, we 

had two designs: the main experiment was a posttest-only randomized experiment with a follow-

up, and the supplemental experiment performed with children in the no extra practice condition 

was a randomized experiment with a pretest, intervention, and follow-up. In both experiments, 

we expected children to construct a better understanding of math equivalence after practicing 

addition problems that were organized by equivalent values when compared to iterative or no 

extra practice conditions. Note that we expected the advantage conferred by organizing facts by 

equivalent sums to be great enough to improve understanding of math equivalence even though 

practice remained in the standard a + b = c format, which has been implicated in the construction 
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of misconceptions about math equivalence (McNeil & Alibali, 2005b).  

Method 

Participants 

Participants were 108 children (ages 7-9) recruited from a diverse range of public and 

private elementary schools (approximately 62% received free or reduced price lunch, with 

schools ranging from 0-79% in terms of the percentage of children who qualified for free or 

reduced price lunch). Four children were excluded from the analysis because they did not 

complete one or more of the sessions. Thus, the final sample consisted of 104 children (M age = 

8 yrs, 6 mo; 34 first semester second graders, 7 second semester second graders, 48 first semester 

third graders, 15 second semester third graders; 49 boys, 55 girls; 57% white, 26% African 

American or black, 12% Hispanic or Latino, 3% multiethnic, and 2% Asian) from a mid-sized 

city in the Midwestern United States. Although children with learning disabilities were not 

specifically excluded from participating in the study, none of the participating children were 

identified as having a learning disability. 

Design 

The design was a posttest-only randomized experiment, with random assignment at the 

individual level. Each child was randomly assigned to one of three conditions: (a) equivalent 

values (n = 36), in which practice problems were grouped and presented by equivalent values 

(e.g., 3 + 4 = __, 5 + 2 = __, 1 + 6 = __), (b) iterative (n = 34), in which practice problems were 

grouped and presented iteratively by shared addend, according to an addition table (e.g., 3 + 4 = 

__, 3 + 5 = __, 3 + 6 = __), or (c) no extra practice (n = 34), in which children did not receive 

any practice over and above what they ordinarily receive at school and home.  
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Although our use of random assignment ensured that any differences between conditions 

at the outset of the experiment could be attributed to chance, we nonetheless compared children 

in the three conditions to see if they differed in terms of their background characteristics. The 

conditions were generally well matched. We found no statistically significant differences 

between children in the three conditions in terms of age (in months), F(2, 96) = 0.53, p = .59; 

gender, χ2 (2, N = 104) = 3.62, p = .16; ethnicity, χ2 (8, N = 104) = 7.02, p = .53, or enrollment 

in the school with the greatest percentage of children qualifying for free or reduced lunch, χ2 (2, 

N = 104) = 0.64, p = 0.73. We did, however, find a difference among conditions in terms of the 

grade level of the children, equivalent values M = 2.81 (SD = 0.52), iterative M = 2.45 (SD = 

0.52), no extra practice M = 2.81 (SD = 0.49), F(2, 101) = 8.07, p = .001. Previous studies have 

been mixed in terms of whether they have found an association between grade level and 

performance solving math equivalence problems. Some have shown no difference in 

performance between children in grades 2-5 (Alibali, 1999; Falkner et al., 1999; NCISLA, 2000), 

whereas others have shown that second graders are actually more likely than third graders to 

solve math equivalence problems correctly (McNeil 2007, 2008). Thus, we tested and controlled 

for any effects of grade level in our analyses. 

All problems in the practice sessions were single-digit addition problems with two 

addends, and all were presented in the traditional “operations on left side” format (i.e., a + b = 

__). Thus, the practice sessions did not include any practice with math equivalence problems 

prior to the assessments. After receiving practice (or no input in the “no extra practice” 

condition), children completed posttest measures of understanding of math equivalence and 

computational fluency. Our goal was to examine if practicing simple addition facts grouped by 

equivalent values causes children to construct a better understanding of math equivalence. 
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Previous research has shown that simple exposure to math equivalence problems improves 

children’s performance on the problems on later tests (Alibali & Meredith, 2009). Thus, it was 

essential that children not be exposed to our particular measures of interest prior to receiving an 

intervention and posttest. If children had been exposed to the measures beforehand, critics could 

argue that any improvements in understanding of math equivalence were due to the combination 

of exposure to math equivalence problems and organized arithmetic practice, rather than to the 

organized arithmetic practice itself.  

Procedure 

Figure 1 presents the general timing of the arithmetic practice sessions, assessment, and 

follow-up for children in each condition. Children in the two practice conditions participated 

individually in four sessions: three practice sessions—the last of which also included the posttest 

assessment—and one follow-up assessment occurring approximately two weeks after the third 

session. During the first three sessions, children practiced addition facts by playing games one-

on-one with a tutor (all three sessions) and by answering flashcards (first two sessions). In 

between these sessions, children practiced by completing brief paper-and-pencil homework 

assignments. Overall, children in the practice conditions received approximately 100 minutes of 

practice prior to completing the assessments. Immediately following the third practice session, 

children were introduced to a new experimenter who administered a posttest to assess their 

understanding of math equivalence and computational fluency (see Assessment and Coding 

section). This new experimenter was used for the purposes of assessment, so he or she could be 

kept uninformed of children’s practice condition. Children in the no extra practice condition 

completed the posttest assessment at the same point in time as children in the practice conditions, 

but they had not received any practice sessions yet. After completing the assessment, children in 
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this no extra practice condition were randomly assigned to the equivalent values condition or to 

the iterative condition, and immediately began to receive practice sessions analogous to the two 

practice conditions in the main experiment. Finally, children in all conditions completed a 

follow-up assessment approximately two weeks after their final practice session. Thus, the delay 

between the final practice session and the follow-up assessment was the same for all children, 

regardless of condition. This “waitlist control” method enabled all children to benefit from the 

experiment by receiving organized practice with addition, and it allowed us to include all 

children in our analysis of the follow-up assessment. Most importantly, it also enabled us to 

perform a miniature pretest-intervention-posttest design with the subset of participants who were 

originally assigned to the no extra practice condition.  

Practice sessions. The sessions were designed to help children practice solving single-

digit addition facts with two addends (e.g., 9 + 8 = 17, 8 + 6 = 14). Children received practice via 

three main types of activities: (a) two-player games involving cards or dice, (b) flashcards, and 

(c) a computer game. One example of a two-player game is called the “Sorting Game”. In this 

game, the child and the experimenter each had a set of cards with a single-digit addition fact 

printed on each in the format a + b = __. The goal of this game was to be the first person to 

organize his or her set of cards into two predetermined piles: “Tom’s pile” and “Mary’s pile.”  

Children were told that Tom and Mary each like a specific number. In the equivalent values 

condition, this number was the sum. In the iterative condition, this number was one of the 

addends.  After sorting all of their cards into the two piles, children in the iterative condition 

were asked to solve each problem to ensure that they would receive the same amount of practice 

with each fact as children in the equivalent values condition.   
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Another example of a two-player game is called “Smack it!” (McNeil et al., 2011). In this 

game, the child and tutor each used a swatter with a suction cup on the end. At the beginning of 

each round, four solved addition problems were placed face-up on the table. Three of the 

problems were related to each other (e.g., in the equivalent values condition, the sum was always 

the same; in the iterative condition, one of the addends was always the same), and one of the 

problems was different. The goal was to be the first player to “smack” the addition problem that 

was different from the other three problems in the set. Children were then asked to explain why 

the problem was different from the other three. Children played a total of ten rounds. Children 

also played other two-player games that were similar in content and scope. The specific games 

played were the same in both practice conditions, and the games were rigged so all children 

practiced the same problems. The only difference between conditions was the manner in which 

problems were organized during the practice (by equivalent values or iteratively). 

Children also practiced flashcards during the sessions. Before completing the flashcards, 

children received a brief demonstration on how to solve the flashcards. The tutor first presented a 

simple flashcard (e.g., “1 + 1 = __”). Next, the tutor read the problem aloud (e.g., “one plus one 

is equal to blank”). Finally, the tutor offered the correct number (e.g., “It’s two!”). When solving 

the flashcards, children were instructed to read each problem aloud before stating the number 

that should go in the blank. Thus, this flashcard practice was not designed to be a high-pressure 

task, as children were given ample time to read each problem aloud and to calculate their 

solution. Children in both practice conditions practiced all 81 addition facts (1 + 1 = __ through 

9 + 9 = __) over the course of the first two practice sessions, but the flashcards were grouped 

into different sets based on condition. In the equivalent values condition, each set included all of 

the addend pairs that summed to the same value (e.g., 1 + 6 = __, 2 + 5 = __, 3 + 4 = __, 4 + 3 = 
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__, 5 + 2 = __, and 6 + 1 = __). In the iterative condition, each set included all of the addend 

pairs that started with the same first addend (e.g., 6 + 1 = __, 6 + 2 = __, 6 + 3 = __, 6 + 4 = __, 6 

+ 5 = __, 6 + 6 = __, 6 + 7 = __, 6 + 8 = __, and 6 + 9 = __). Children read and solved each 

flashcard in a set one at a time. After each flashcard was solved and feedback was given, the 

experimenter placed the solved flashcard face-up on the table. Once children finished solving all 

flashcards in the given set, the experimenter directed their attention to the flashcards on the table 

and asked them if they saw anything in common across all the cards. After children gave a 

reasonable response, the experimenter gave positive feedback and restated the commonality 

(e.g., “Good job! Each math problem is equal to seven!” or “Good job! Each math problem is six 

plus a number!”). Finally, the experimenter removed the flashcards from the table and moved on 

to the next set. Children completed a total of 45 flashcards during the first practice session and 

36 flashcards during the second practice session. 

Children also played a computer game in each of the three practice sessions. The game 

was a modified version of Snakey Math from Curry K. Software. The child and the tutor each 

controlled one of four snakes on the screen (the other two were computer controlled). Snakes 

could move up, down, left, and right. At the beginning of each round, a problem (e.g., 3 + 4 = 

__) was presented at the bottom of the screen and four numbers appeared in random locations on 

the screen. The goal was to be the first snake to eat the number that should go in the blank. 

Again, the only difference between conditions was the manner in which problems were 

organized during the game (by equivalent values or iteratively). 

Homework. Children were asked to continue their practice in between practice sessions 

through brief homework assignments. These assignments were paper-and-pencil worksheets 

designed to take approximately 15 minutes to complete. All problems on the worksheets were 
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single-digit addition problems with two addends and all were presented in the traditional 

“operations on left side” format (i.e., a + b = c). Thus, in line with the practice sessions, the 

worksheets did not include any math equivalence problems. Children were told that they would 

receive a sticker for completing the worksheets and turning them in when they returned for the 

next session. When a child turned in his or her completed worksheet, the tutor asked the child to 

read each problem aloud (along with the number written in the blank), and the tutor corrected 

any errors. Errors were rare; they occurred only on 1% of all problems solved by all children 

across both worksheets. To ensure that all children would be able to participate in this “read 

aloud” activity, tutors kept correctly completed worksheets on hand. Thus, children who had not 

turned in their own completed worksheet participated in the “read aloud” activity by using a 

worksheet that had been correctly completed for them. Most children turned in their own 

completed worksheets (97% completion rate from the first to second session, and 86% from the 

second to third session), and many who did not insisted that they had done the homework, but 

forgot to bring it with them. Every child returned at least one worksheet over the course of the 

intervention, and the number of children who failed to turn in at least one of the worksheets did 

not differ across the two practice conditions, χ2 (1, N = 70) = 1.34, p = .25.  

Assessments and coding 

Posttest assessment of understanding of math equivalence. Children completed a 

three-component measure of understanding of math equivalence consisting of: (a) equation 

solving, (b) equation encoding, and (c) defining the equal sign. This measure was similar to 

measures used in many previous studies (e.g., McNeil & Alibali, 2005b; Hattikudur & Alibali, 

2010; Matthews & Rittle-Johnson, 2009; McNeil et al., 2010). According to McNeil and Alibali 

(2005b), these three components tap a system of three distinct, but theoretically related 
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constructs involved in children’s understanding of math equivalence. We established inter-rater 

reliability on each component by having a second coder code the responses of 20% of the 

children. 

To assess equation solving, children were videotaped as they solved and explained four 

math equivalence problems (1 + 5 = __ + 2, 7 + 2 + 4 = __ + 4, 2 + 7 = 6 + __, 3 + 5 + 6 = 3 + 

__). An experimenter placed each equation on an easel and said, “Try to solve the problem as 

best as you can, and then write the number that goes in the blank.” After children wrote a number 

in the blank, the experimenter said, “Can you tell me how you got x” (x denotes the given 

answer) (cf. Alibali, 1999; Perry, 1991; Rittle-Johnson & Alibali, 1999; Siegler, 2002). 

Children’s equation-solving strategies were coded as correct or incorrect based on a system used 

in previous research (e.g., McNeil & Alibali, 2004; Perry et al., 1988). Correctness was 

determined based on the solutions children wrote in the blank (e.g., for the problem 3 + 5 + 6 = 3 

+ __, a solution of 17 indicated an incorrect “Add All” strategy and a solution of 11 indicated a 

correct strategy). As in prior work, solutions were coded as reflecting a particular strategy as 

long as they were within ±1 of the solution that would be achieved with that particular strategy. 

Inter-rater reliability was high; agreement between coders on whether or not a given strategy was 

correct was 99%.  

To assess equation encoding, children were asked to reconstruct four math equivalence 

problems (4 + 5 = 3 + __, 7 + 1 = __ + 6, 2 + 3 + 6 = 2 + __, 3 + 5 + 4 = __ + 4) after viewing 

each for 5 seconds (cf. Chase & Simon, 1973; Siegler, 1976). Children’s encoding performance 

was coded as conceptually correct or conceptually incorrect based on a system used in previous 

research (e.g., McNeil & Alibali, 2004; Rittle-Johnson & Alibali, 1999). Children were given 

credit for a conceptually correct reconstruction if they reconstructed the structure of the equation 
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correctly. Thus, mistakes involving only the specific numbers or arrangements of the numbers 

(e.g., writing “7 + 1 = __ + 5” or “7 + 1 = 6 + __” for the equation 7 + 1 = __ + 6) were not 

counted as conceptual errors. Some common errors included converting the problem to a 

traditional addition problem (e.g., reconstructing 4 + 5 = 3 + __ as “4 + 5 + 3 = __”), omitting 

the plus on the right side of the equal sign (e.g., reconstructing 4 + 5 = 3 + __ as “4 + 5 = 3 __”), 

omitting the equal sign (e.g., reconstructing 7 + 1 = __ + 6 as “7 + 1 __ + 6.” Agreement 

between coders on whether or not a given reconstruction was correct was 99%. 

To assess defining the equal sign, children were videotaped as they responded to a set of 

questions about the equal sign. The experimenter pointed to an equal sign presented alone and 

asked: (1) “What is the name of this math symbol?” (2) “What does this math symbol mean?” 

and (3) “Can it mean anything else?” (cf. Behr et al., 1980; Baroody & Ginsburg, 1983; Knuth et 

al., 2006). Children’s responses were categorized according to a system used in previous 

research (e.g., Knuth et al., 2006; McNeil & Alibali, 2005a, b). We were specifically interested 

in whether or not children defined the equal sign relationally as a symbol of math equivalence 

(e.g., “two amounts are the same”). Defining the equal sign relationally has had good concurrent 

validity in previous research (e.g., Knuth et al., 2006). Agreement between coders on whether or 

not a given definition was relational was 100%. 

Follow-up assessment. All children also participated in a brief assessment of their 

equation-solving performance approximately two weeks after their third practice session. 

Children solved the same four math equivalence problems that they had solved during the 

original, posttest assessment. However, children were provided with brief tutelage and feedback 

at follow-up. When the tutor presented each equation, he or she instructed the child as follows: 

“You need to figure out what number goes in the blank (point to blank) to make this side of the 
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equal sign (gesture to the left-hand side of the problem) the same amount as (point to the equal 

sign) this side of the equal sign (gesture to the right-hand side of the problem).” This brief 

tutelage was based on interventions used in previous studies (e.g., Alibali, 1999; McNeil & 

Alibali, 2005b; Perry, 1991; Rittle-Johnson & Alibali, 1999) that have been shown to help some, 

but not all, children solve math equivalence problems correctly, reconstruct the problems 

correctly after viewing them briefly, and define the equal sign relationally. If the child provided 

the correct number, the tutor gave positive feedback such as “good job” or “that’s right” and then 

moved on to the next problem. However, if the child provided an incorrect number, the tutor 

instructed the child as follows: “No, that’s not the number that goes in the blank. The correct 

number is x because a plus b is equal to x plus y” (Note: the actual numbers in the problem are 

used in place of a, b, x, and y). The purpose of this follow-up session was to examine potential 

enduring effects of the practice conditions on children’s openness to learn from brief instruction 

on math equivalence. 

 Measures of computational fluency. In addition to the measure of understanding of 

math equivalence, children also completed two measures of computational fluency. In the first 

measure, children solved a set of simple addition problems that were presented one at a time in 

the center of a computer screen (cf. Geary, Bow-Thomas, Liu, & Siegler, 1996; LeFevre, 

Sadesky, & Bisanz, 1996; Siegler, 1988). For each trial, a fixation point appeared in the center of 

the screen followed by the prompts “ready,” “set,” and “go,” displayed for 1 second each. The 

two addends were then presented on the screen (e.g., 9 + 8), and they remained on the screen 

until the child said his or her answer aloud. Accuracy and reaction time were recorded. The 

second measure was the Math Computation section of Level 8 of the Iowa Test of Basic Skills, 

which is a standardized, timed measure of arithmetic computation that yields a percentile rank. 
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Results 

Children’s understanding of math equivalence was poor overall. This finding is consistent 

with prior studies (e.g., Alibali, 1999; McNeil, 2008; Perry et al., 1988), and it was not 

surprising, given that all practice problems in the experiment were presented in the traditional a 

+ b = c format (see McNeil et al. 2011). Table 1 presents performance on each component of the 

math equivalence measure by condition. As shown in the table, children in the equivalent values 

condition performed best across all three components of the math equivalence measure. We 

analyzed the effects of practice condition on each of the three components of understanding of 

math equivalence and on the follow-up assessment. 

Effects of practice condition on children’s equation solving performance 

Equation solving performance was poor overall (M = 0.67 [out of 4], SD = 1.39) and not 

normally distributed, with 79 of 104 children (76%) solving zero equations correctly. The 

distribution was bimodal with most children solving zero (76%) or all four (14%) equations 

correctly. Bimodal distributions of performance on math equivalence problems are common 

(e.g., McNeil & Alibali, 2004) and expected because it takes a dramatic shift in understanding 

just to solve one equation correctly. Thus, we classified children into two groups: those who 

solved zero equations correctly (N = 79) and those who solved at least one equation correctly (N 

= 25). We then used binomial logistic regression to predict the log of the odds of solving at least 

one equation correctly (see Agresti, 1996). Grade level was not a significant predictor of 

performance, 

€  

ˆ β   = 0.59, z = 1.34, Wald (1, N = 104) = 1.80, p = .18, so we did not include it in 

the model. However, conclusions were the same when we included it. 

To represent the three levels of practice condition, we used the set of two orthogonal 

Helmert contrast codes that mapped onto our a priori hypotheses: (1) equivalent values condition 
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versus the two “control” conditions, and (2) iterative condition versus the no extra practice 

condition. As predicted, children in the equivalent values condition were more likely than 

children in the other two conditions to solve at least one equation correctly (13 of 36 [36%] 

versus 12 of 68 [18%]), 

€ 

ˆ β   = 0.97, z = 2.06, Wald (1, N = 104) = 4.25, p = .04. The effect size 

was medium; the model estimates that the odds of solving at least one equation correctly are 

more than 2.6 times higher after participating in the equivalent values condition than after 

participating in one of the control conditions. Children in the iterative and no extra practice 

conditions were equally likely to solve at least one equation correctly (6 of 34 [18%] in both 

conditions). Thus, as predicted, practice organized around equivalent values produced the best 

chance of solving a math equivalence problem correctly. A separate pairwise comparison of the 

equivalent values and iterative conditions was marginal, but consistent with the earlier analysis 

(p = .08). 

We also examined strategy use in each of the three conditions. Table 2 presents the 

percentage of equations solved with each strategy in each condition. Two aspects of the table 

warrant attention. First, the equivalent values condition had the greatest percentage of equations 

solved with a correct strategy (22.2% vs. 13.2% for iterative and 14.7% for no extra practice). 

Second, the equivalent values condition had the lowest percentage of equations solved using 

either the Add All or Add to Equal Sign strategies (59.1% vs. 68.4% for iterative and 63.9% for 

no extra practice). These two strategies are the ones most commonly used by children who have 

not received any instruction on math equivalence (McNeil, 2005). They are both incorrect 

generalizations from children’s experience with traditional arithmetic, as children are simply 

adding up all the numbers in the equation or adding up all the numbers to the left of the equal 

sign, rather than considering the implications of having addends on both sides of the equation. 
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Effects of practice condition on children’s encoding performance 

Encoding performance was poor overall (M = 1.41 [out of 4], SD = 1.45) and not 

normally distributed, with 38 of 104 children (37%) reconstructing zero equations correctly. 

Thus, we again categorized children into two groups: those who reconstructed zero equations 

correctly (N = 38) and those who reconstructed at least one equation correctly (N = 66) and used 

binomial logistic regression. Grade level was not a significant predictor of performance, 

€ 

ˆ β   = 

0.43, z = 1.13, Wald (1, N = 104) = 1.28, p = .26, so we did not include it in the model. However, 

conclusions were the same when we included it.  

As predicted, children in the equivalent values condition were more likely than children 

in the other two conditions to reconstruct at least one equation correctly (28 of 36 [78%] versus 

38 of 68 [56%]), 

€ 

ˆ β   = 1.02, z = 2.17, Wald (1, N = 104) = 4.68, p = .03. The effect size was 

medium; the model estimates that the odds of reconstructing at least one equation correctly are 

over 2.7 times higher after participating in the equivalent values condition than after participating 

in one of the control conditions. Children in the iterative condition were not statistically different 

from children in the no extra practice condition, (20 of 34 [59%] versus 18 of 34 [53%]), 

€ 

ˆ β   = -

0.24, z = -0.49, Wald (1, N = 68) = 0.24, p = .63. Thus, as predicted, practice organized around 

equivalent values produced the best chance of encoding a math equivalence problem correctly. A 

separate pairwise comparison of the equivalent values and iterative conditions led to similar 

conclusions (p = .09). 

Effects of practice condition on children’s equal sign definition 

Equal sign defining was poor, with only 7 of 104 children (7%) defining the equal sign 

relationally. Grade level was a significant predictor of performance, 

€ 

ˆ β   = 2.12, z = 1.97, Wald (1, 

N = 104) = 3.88, p = .05, so we included it in the model. Controlling for grade level, children in 
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the equivalent values condition were not significantly more likely than children in the other two 

conditions to define the equal sign relationally (4 of 36 [11%] versus 3 of 68 [4%]), 

€ 

ˆ β   = 0.84, z = 

1.00, Wald (1, N = 104) = 1.00, p = .32. Children in the iterative condition were not statistically 

different from children in the no extra practice condition, (2 of 34 [6%] versus 1 of 34 [3%]), 

€ 

ˆ β   

= 0.03, z = 0.02, Wald (1, N = 68) = 0.001, p = .98.   

A marginal advantage of the equivalent values condition emerged when we were slightly 

more lenient and counted “is equal to” and “equal to” as relational definitions. We typically do 

not give credit for these underspecified definitions; however, some researchers have been far 

more lenient in their coding (e.g., Rittle-Johnson & Alibali, 1999), and other researchers have 

not specified how they treat such responses (e.g., Hattikudur & Alibali, 2010). When applying 

the more lenient criterion, 12 of 104 children (12%) defined the equal sign relationally. Even 

after controlling for grade level, children in the equivalent values condition were marginally 

more likely than children in the other two conditions to do so (7 of 36 [19%] versus 5 of 68 

[7%]), 

€ 

ˆ β   = 1.22, z = 1.69, Wald (1, N = 104) = 2.85, p = .09. The effect size was large; the model 

estimates that the odds of providing a relational definition are 3.4 times higher after participating 

in the equivalent values condition than after participating in one of the control conditions. 

Effects of practice condition on computational fluency 

Because there are sometimes trade-offs between conceptual understanding and 

computational fluency, it was important to test if the gains in understanding of math equivalence 

for the equivalent values condition (shown above) were accompanied by decrements in 

computational fluency when compared to the iterative condition. We did not find any evidence 

of such trade-offs in this sample. Children in the equivalent values condition had a similar 

average Normal Curve Equivalent (M = 50.48, SD = 13.49) to children in the iterative (M = 
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51.04, SD = 17.69) condition on Level 8 of the Math Computation section of the Iowa Tests of 

Basic Skills, F(1, 68) = 0.023, p = .88. They also performed similarly when solving single-digit 

addition facts: accuracy (equivalent values M = 13.36, SD = 1.10; iterative M = 12.88, SD = 

1.83), F(1, 68) = 1.77, p = .19, average reaction time (equivalent values M = 5.08 s, SD = 1.93; 

iterative M = 5.91 s, SD = 2.71), F(1, 68) = 2.22, p = .14), and number of problems on which 

retrieval was used (equivalent values M = 2.72, SD = 3.04; iterative M = 3.44, SD = 3.48, F(1, 

68) = 0.89, p = .36. This is not surprising given that children in both practice conditions received 

organized practiced with the same set of addition facts over the course of the intervention (only 

the specific organization of the facts differed).  

We also found tentative evidence that our two practice conditions facilitated children’s 

computational fluency. Specifically, children in the no extra practice condition had a lower 

average Normal Curve Equivalent (M = 38.87, SD = 14.23) than children in the two practice 

conditions, F(1, 101) = 13.98, p < .001. They also had lower use of retrieval when solving 

single-digit addition facts (M = 1.76, SD = 2.80) than children in the two practice conditions, 

F(1, 101) = 4.08, p = .046, but they had similar accuracy (M = 13.09, SD = 1.14) and reaction 

time (M = 5.71 s, SD = 2.61).  

Effects of practice condition on follow-up performance 

We lost four children to attrition (3 equivalent values and 1 iterative) at follow-up. Recall 

that children received brief tutelage prior to completing the follow-up assessment. They also 

received feedback after solving each equation. Also recall that there were only two conditions to 

compare on the follow-up assessment: equivalent values and iterative. This is because the no 

extra practice condition was a “waitlist control” condition in which children were randomly 

assigned to one of the two practice conditions after taking the posttest. All children regardless of 
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condition participated in the follow-up assessment approximately two weeks after their third 

practice session. Grade level was not a significant predictor of performance, 

€ 

ˆ β   = 0.41, z = 1.09, 

Wald (1, N = 100) = 1.80, p = .28, so we did not include it in the model. However, conclusions 

were the same when we included it.  

Overall, performance was better than it was on the posttest, but it was still low (M = 1.65 

[out of 4], SD = 1.62) and not normally distributed, with 40 of 100 (40%) of children solving 

zero equations correctly. We again categorized children into two groups: those who solved zero 

equations correctly (N = 40) and those who solved at least one equation correctly (N = 60) and 

used binomial logistic regression. As predicted, children in the equivalent values condition were 

more likely than children in the iterative condition to solve at least one equation correctly (35 of 

50 [70%] versus 25 of 50 [50%]), 

€ 

ˆ β   = 0.85, z = 2.02, Wald (1, N = 100) = 4.10, p = .04. The 

effect size was medium; the model estimates that the odds of solving at least one equation 

correctly are more than 2.3 times higher after participating in the equivalent values condition 

than after participating in the iterative condition.   

We also examined strategy use in the two conditions at follow-up. Table 3 presents the 

percentage of equations solved with each strategy in each condition. The two patterns that 

emerged at posttest remained at follow-up. First, the percentage of equations solved with a 

correct strategy was greater in the equivalent values condition (50%) than in the iterative 

condition (33%). Second, the percentage of equations solved using either the Add All or Add to 

Equal Sign strategies was lower in the equivalent values condition (27.5%) than in the iterative 

condition (38.5%). 

Supplemental analysis of children in the no extra practice condition 
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We separately analyzed the follow-up performance of children who had originally been 

assigned to the no extra practice condition (N = 34). These children took the “posttest” before 

they had been randomly assigned to one of the two practice conditions, so we knew how well 

they performed on the math equivalence measures prior to receiving the intervention. Thus, this 

subset of children participated in a randomized experiment with a pretest, intervention, and 

follow up. There were no significant differences between children in the two conditions in terms 

of demographic variables or scores at pretest. Table 4 presents pre-intervention scores on each 

component of the math equivalence measure by condition along with scores on the follow-up 

assessment. We used binomial logistic regression to predict the log of the odds of solving at least 

one equation correctly on the follow-up. We included pre-intervention scores on the encoding, 

equation solving, and equal sign defining measures as control variables, but conclusions are the 

same if they are not included. As predicted, even after controlling for pre-intervention scores, 

children who ended up receiving the equivalent values practice were more likely than children 

who ended up receiving the iterative practice to solve at least one equation correctly at follow-up 

(13 of 14 [93%] versus 6 of 16 [38%]), 

€ 

ˆ β   = 3.36, z = 2.54, Wald (1, N = 30) = 6.44, p = .01. The 

effect size was large; the model estimates that the odds of solving at least one equation correctly 

are more than 28 times higher after receiving the equivalent values practice than after 

participating in the iterative practice. Note that the particularly high performance children in the 

equivalent values condition in this supplemental analysis reinforces our concerns about pretest 

sensitization. These children received the same amount of practice as children in the original 

equivalent values condition, and they also had same length of delay between their final practice 

session and follow-up assessment. Nonetheless, they performed significantly better than children 

in the original equivalent values condition on the follow-up (13 of 14 [93%] versus 22 of 36 
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[61%]), χ2 (1, N = 50) = 4.84, p =. 03. This result suggests that children may reap more benefits 

from arithmetic practice that is organized by equivalent values if they have been exposed to math 

equivalence problems prior to the practice than if they have not been exposed prior to the 

practice. 

Discussion 

The present experiment provides the first evidence that the organization of children’s 

knowledge of arithmetic facts may be an important source of individual differences in children’s 

understanding of math equivalence. We randomly assigned children to practice arithmetic in one 

of three conditions. Children who practiced problems that were grouped by equivalent values 

came away with a better understanding of math equivalence than children who practiced 

problems grouped in an iterative fashion or children who received no extra practice. Importantly, 

the gains in understanding of math equivalence were not accompanied by any detectable 

difference in computational fluency. These results provide evidence for a causal link between a 

conceptual organization of arithmetic facts and a better understanding of math equivalence. It is 

noteworthy that this link exists even when the format of the addition facts takes the standard 

“operations on left side” format that has been implicated in children’s misconceptions (e.g., 

McNeil et al., 2011). 

Potential Mechanisms  

Our evidence indicates that the external organization of arithmetic practice affects 

children’s understanding of math equivalence. However, the mechanisms underlying this effect 

are less clear. How is it that conceptually based organization of arithmetic facts helps children to 

form a better understanding of math equivalence? Although it is only speculation at this point, 

we have proposed three possibilities. First, arithmetic practice organized around equivalent 
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values may help children extract conceptual knowledge about both number and math equivalence 

because it exposes children to multiple, consecutive examples of the same value that vary in 

surface details. For instance, the group of facts that sum to 9 (e.g. 3 + 6, 4 + 5, etc.), vary in 

appearances but are structurally equivalent in that they sum to 9. According to Gelman and 

Williams (1998), this type of exposure to structurally redundant examples in a domain increases 

the chances that a learner’s mental structures will be compatible with the underlying structure of 

the domain. More specifically, this organization may increase children’s chances of inducing 

arithmetic principles, such as the commutative property, from their experience with arithmetic. 

As Carpenter et al.’s work (e.g., Falkner et al., 1999; Jacobs et al., 2009; NCISLA, 2000) has 

convincingly demonstrated, a key strategy for helping children construct a good understanding of 

mathematical equivalence is to teach them to notice and understand the structure and properties 

of arithmetic.  

 Second, arithmetic practice organized around equivalent values may help children 

process math equivalence problems more efficiently because it leads equivalent addend pairs to 

become associated. When facts with equivalent values are practiced in succession, multiple 

terms—including the sum (e.g., 9) and addend pairs sharing that sum (e.g., 3 + 6, 2 + 7, etc.)—

come to be increasingly associated with one another. Subsequently, when faced with an equation 

that includes one of the addend pairs, equivalent addend pairs may be primed. Once concurrently 

activated, these equivalent combinations have the potential to influence encoding of, strategy 

selection on, and/or conceptualization of equations involving these facts via top-down processes 

(cf. Bruner, 1957; McGilly & Siegler, 1990; Rumelhart, 1980). 

Third, practice with problems organized by equivalent sums may enable children to 

notice that addend pairs can be equivalent to one another based on transitive relations (e.g., if 3 + 
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4 = 7 and 5 + 2 = 7, then 3 + 4 = 5 + 2). This particular insight—that an addend pair can be 

equivalent not only to a single number, but also to other addend pairs—is a key milestone in the 

construction of an understanding of math equivalence (Behr et. al., 1980; Kieran, 1981). When 

children are faced with the fact that two addend pairs can be equivalent to one another, it 

challenges their misconceptions about the way arithmetic works and facilitates relational 

thinking about numbers (Falkner et al., 1999; Jacobs et al., 2007; NCISLA, 2000). 

Practical Tools for Teaching Math equivalence 

In addition to theoretical implications for mechanisms of knowledge construction, our 

results have important practical implications. We have identified the organization of arithmetic 

practice as a malleable factor that can be changed to improve children’s understanding of math 

equivalence. Our findings support the idea that seemingly minor differences in children’s early 

input (i.e. the organization of arithmetic facts practice) can play a central role in shaping and 

constraining the path of development of children’s understanding of fundamental concepts (see 

also Klibanoff, et al. 2006; McNeil et al., 2011; Ramani & Siegler, 2008). A major strength of 

our findings is the practicality of the intervention—it requires neither extensive teacher training, 

nor months of explicit conceptual instruction for children, yet it is still productive in preparing 

children to learn the concept of math equivalence. However, it must be acknowledged that our 

single intervention by no means led children to form a mastery level understanding of math 

equivalence. Performance remained relatively poor overall, and children’s definitions of the 

equal sign did not benefit as much as their equation solving and encoding performance. A series 

of future studies has been designed to test whether using this intervention combined with other 

instructional interventions can lead children to form a more robust and comprehensive 

understanding of math equivalence.  
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Limitations and Future Directions 

Although our results support the hypothesis that organizing arithmetic facts based on 

equivalent total values is a key factor supporting the formation of an understanding of math 

equivalence, there are at least three limitations. First, our use of tightly controlled, scripted 

activities during the intervention raises concerns regarding the generalization of our results to 

different learning environments. Nevertheless, the simplicity of our manipulation, which merely 

requires using a specific organization of the addition facts already practiced routinely in schools 

and homes throughout the U.S., increases the likelihood that our findings will generalize to less-

controlled learning environments such as formal classrooms or parent-child interactions.  

Second, we did not gather pretest measures of understanding of math equivalence on the 

full sample because it was important to avoid pretest sensitization. Such sensitization was a real 

concern because previous research has shown that simple exposure to math equivalence 

problems improves children’s performance on later tests of math equivalence (Alibali & 

Meredith, 2009). Thus, we used a posttest-only design and randomly assigned individual 

children to conditions. Random assignment was successful in creating groups that were similar in 

terms of most demographics and context variables, but fell short in terms of equating groups by 

grade level. Thus, we cannot rule out the possibility that there were some other grade-related 

differences in mathematical understanding between groups in the main experiment at pretest. 

Fortunately, grade level (2-6) has not consistently been associated with knowledge of math 

equivalence (Alibali, 1999; Falkner et al., 1999; NCISLA, 2000), and controlling for it in the 

present analyses did not affect conclusions.  

Importantly, we supplemented our main experiment with a manipulation of our waitlist 

control group to serve as a check on the conclusions of our larger design. With this method, we 
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randomly assigned children who were originally assigned to the no extra practice condition to 

one of the practice conditions after they had completed the posttest assessment. Thus, the 

nominal posttest effectively served as a pretest for this subset of children, and the nominal 

follow-up assessment served as a delayed posttest. Again, there were no pre-intervention 

differences in demographics or understanding of math equivalence for this subset of children, 

and we still found that post-intervention performance for the equivalent values condition was 

better than performance for the iterative condition. The results from this waitlist control 

manipulation were even stronger than the findings of our main experiment and help mitigate 

potential concerns with our larger posttest-only design.  

Third, we do not wish to imply that conceptually organized arithmetic practice is strictly 

necessary or sufficient for the formation of a nuanced understanding of math equivalence. Our 

goal was to test a theoretical claim about one potential source of individual differences in 

children’s understanding of math equivalence, not to design an intervention to get children to 

mastery-level understanding. However, given that the ultimate goal is to leverage all of the 

recent theoretical advances to design a comprehensive intervention, the present intervention may 

be useful in combination with other effective methods for cultivating an understanding of math 

equivalence. Some of these other methods include: (1) practicing arithmetic problems in 

nontraditional formats such as __ = 9 + 8 or 17 = 9 + __ (Baroody & Ginsburg, 1983; Denmark, 

Barco, & Voran, 1976; MacGregor & Stacey, 1999; McNeil et al., 2011; Seo & Ginsburg, 2003; 

Weaver, 1973), (2) learning about the equal sign in non-arithmetic contexts, such as 28 = 28 or 1 

foot = 12 inches (McNeil, 2008; see also Li et al. 2008 for comparison to educational practices 

used in China), (3) solving equations presented with concrete materials (e.g., wooden blocks, 

stickers) before “fading” to more abstract symbols (Sherman & Bisanz, 2009; Fyfe & McNeil, 
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2009), (4) comparing and explaining different types of problems and strategies (e.g., Falkner, et 

al., 1999; Hattikudur & Alibali, 2010; Jacobs et al., 2007; Rittle-Johnson, 2006; Siegler, 2002). 

Conclusions 

The present study adds to a growing literature suggesting that relatively minor, practical 

modifications to children’s early learning environments can affect their understanding of 

foundational mathematical concepts (e.g., McNeil et al., 2011; Ramani & Siegler, 2008). Results 

reinforce the idea that children benefit when the structure of early input is modified to map onto 

the underlying structure of the conceptual domain of interest. More specifically, results indicate a 

causal link between a conceptual organization of arithmetic facts practice and performance 

solving and encoding equations with operations on both sides of the equal sign. That is, simply 

organizing arithmetic facts practice by equivalent total values helps children better understand 

math equivalence. Such findings not only contribute to our general understanding of how 

children construct knowledge, but also offer specific methods for facilitating the learning of an 

important mathematics concept that is necessary for success in algebra.
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Table 1 

Performance on Each Component of Understanding of Math Equivalence by Condition  

Component & measure Equivalent values Iterative No extra practice 

Equation solving  

     M (SD) 

     % at least one correct 

 

0.88 (1.48) 

36% 

 

0.53 (1.30) 

17% 

 

0.59 (1.37) 

18% 

Equation encoding  

     M (SD) 

     % at least one correct 

 

1.17 (1.00) 

69% 

 

0.94 (1.04) 

53% 

 

0.82 (1.14) 

44% 

Defining the equal sign 

     % who defined relationally 

 

11% 

 

3% 

 

6% 
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Table 2 

Percentage of Equations Solved With Each Strategy in Each Condition at Posttest  

Strategy Definition Eq values Iterative No extra 

Correct Any strategy that makes both sides 

of the equation equal.  

22.2% 13.2% 14.7% 

Add All Add all the numbers in the equation. 28.5% 30.9% 36.0% 

Add to Equal Sign Add all the numbers appearing to the 

left of the equal sign. 

30.6% 37.5% 27.9% 

Carry Take one of the numbers appearing 

to left of the equal sign and write it 

in the blank. 

6.3% 5.1% 8.8% 

 

Other Incorrect Incorrect strategies other than Add 

All, Add to Equal Sign, or Carry. 

12.5% 13.2% 12.5% 
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Table 3 

Percentage of Equations Solved With Each Strategy in Each Condition at Follow-up  

Strategy Eq values Iterative 

Correct 50.0% 33.0% 

Add All 9.5% 16.0% 

Add to Equal Sign 18.0% 22.5% 

Carry 5.5% 7.0% 

Other Incorrect 17.5% 21.5% 
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Table 4 

Pre-intervention and Follow-up Performance by Condition for the Subset of Children Who Had 

Originally Been Assigned to the No Extra Practice Condition  

Time point Component & measure Equivalent values Iterative 

Pre-intervention Equation solving  

     M (SD) 

     % at least one correct 

 

0.71 (1.45) 

24% 

 

0.47 (1.34) 

12% 

 Equation encoding  

     M (SD) 

     % at least one correct 

 

1.06 (1.25) 

53% 

 

0.59 (1.00) 

35% 

 

 

Follow-up 

Defining the equal sign 

     % who defined relationally 

Equation solving 

     M (SD) 

     % at least one correct 

 

0% 

 

2.71 (1.26) 

93% 

 

12% 

 

1.13 (1.67) 

38% 

 



ORGANIZING ARITHMETIC AROUND EQUIVALENT VALUES 47 
 
 
 
 

 

 
 

Figure 1. General timing of arithmetic practice sessions, assessment, and follow-up for children 

in each condition. 


